ANALISIS FREKUENSI ALAMI JEMBATAN SEI WAMPU: PERBANDINGAN SIMULASI ABAQUS DAN METODE DUNKERLEY
DOI:
https://doi.org/10.51510/agregat.v5i1.2332Keywords:
Frekuensi Alami, ABAQUS, Metode Dunkerley, Analisis Dinamik, Struktur JembatanAbstract
Penelitian ini membahas perbandingan nilai frekuensi alami Jembatan Sei Wampu yang diperoleh melalui simulasi numerik ABAQUS dan metode teoritik Dunkerley. Simulasi numerik dengan ABAQUS menghasilkan nilai frekuensi alami sebesar 10,711 rad/det, sedangkan metode Dunkerley memberikan nilai sebesar 10,60 rad/det. Persentase perbedaan antara kedua metode tersebut berkisar antara 0,93% hingga 0,94%. Hasil ini menunjukkan bahwa metode Dunkerley mampu memberikan estimasi awal perilaku dinamik struktur dengan akurasi yang cukup baik. Namun, simulasi numerik menawarkan keunggulan dalam mempertimbangkan faktor-faktor kompleks seperti distribusi kekakuan, massa, dan kondisi batas struktur. Temuan ini menegaskan pentingnya penggunaan gabungan pendekatan teoritik dan numerik untuk meningkatkan keandalan hasil analisis dalam proses desain dan evaluasi struktur jembatan. Dengan demikian, penelitian ini dapat menjadi rujukan praktis bagi para perencana struktur dalam mengoptimalkan kombinasi pendekatan teoritik dan numerik.
Downloads
References
Akbar, A. O., Handayani, E., Dwiretnani, A., & Zulfiati, R. (2024). Identifikasi Urutan Prioritas Penanganan dalam Pemeriksaan Kondisi Jembatan dengan Metode Bridge Management System (BMS). Jurnal Talenta Sipil, 7(2), 981. https://doi.org/10.33087/talentasipil.v7i2.613
Akbari, R., Maadani, S., & Maalek, S. (2018). On the fundamental natural frequency of bridge decks: Review and applications. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 171(12), 931–945. https://doi.org/10.1680/jstbu.17.00102
Anshori, M., & Iswati, S. (2020). Metode Penelitian Kuantitatif (2nd ed.). Airlangga University Press.
Barth, K. E., & Wu, H. (2007). Development of improved natural frequency equations for continuous span steel I-girder bridges. Engineering Structures, 29(12), 3432–3442. https://doi.org/10.1016/j.engstruct.2007.08.025
Borlenghi, P., Saisi, A., & Gentile, C. (2024). Vibration monitoring of masonry bridges to assess damage under changing temperature. Developments in the Built Environment, 20, 100555. https://doi.org/10.1016/j.dibe.2024.100555
Cao, L., Liu, J., & Frank Chen, Y. (2018). Theoretical and Numerical Study on the Natural Frequencies of Bridges With Corrugated Steel Webs. Structures, 15, 224–231. https://doi.org/10.1016/j.istruc.2018.07.005
Çevik, M., Özkaya, E., & Pakdemirli, M. (2002). Natural frequencies of suspension bridges: An artificial neural network approach. Journal of Sound and Vibration, 257(3), 596–604. https://doi.org/10.1006/jsvi.2001.4237
Chrisoffel, T. S., & Priyosulistyo. (2010). Pengaruh Frekwensi Alami Struktur Dek pada Resonansi Kabel dari Jembatan Kabel (Model Eksperimen). Universitas Gadjah Mada.
Clough, R. W., & Penzien, J. (1995). Dynamics of Structures (3rd ed.). Computers & Structure Inc.
Dan, D., Ying, Y., & Ge, L. (2022). Digital Twin System of Bridges Group Based on Machine Vision Fusion Monitoring of Bridge Traffic Load. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22190–22205. https://doi.org/10.1109/TITS.2021.3130025
Diana, G., Fiammenghi, G., Belloli, M., & Rocchi, D. (2013). Wind tunnel tests and numerical approach for long span bridges: The Messina bridge. Journal of Wind Engineering and Industrial Aerodynamics, 122, 38–49. https://doi.org/10.1016/j.jweia.2013.07.012
Fauzan. (2022). Pemodelan Elemen Hingga Menggunakan Software Abaqus (1st ed.). Unhas Press.
Gan, B. Z., Chiew, S. P., Lu, Y., & Fung, T. C. (2019). The effect of prestressing force on natural frequencies of concrete beams – A numerical validation of existing experiments by modelling shrinkage crack closure. Journal of Sound and Vibration, 455, 20–31. https://doi.org/10.1016/j.jsv.2019.04.030
Hadipour, M., Ahmadian, M. T., Lashkari, S. G., & Barari, A. (2011). Natural Frequency Improvement Of A Suspended Fgm Bridge. The ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011, 63411.
Hardani, Andriani, H., Ustiawaty, J., Utami, E. F., Istiqomah, R. R., Fardani, R. A., Sukmana, D. J., & Auliya, N. H. (2020). Metode Penelitian Kualitatif & Kuantitaif (H. Abadi, Ed.). Pustaka Ilmu.
Jalalul Akbar, S., Maizuar, M., Yusuf, K., & Arfiandi, J. (2021). Monitoring the Dynamic Behavior of PCI Bridges Using Short Period Seismograph and CSI Bridge Modeling. International Journal of Engineering, Science and Information Technology, 1(4), 51–58. https://doi.org/10.52088/ijesty.v1i4.168
Jiang, L., Kang, X., Li, C., & Shao, G. (2019). Earthquake response of continuous girder bridge for high-speed railway: A shaking table test study. Engineering Structures, 180, 249–263. https://doi.org/10.1016/j.engstruct.2018.11.047
Kirsanov, M. N. (2021). Dependence of the Two-Span Truss Bridge Vibration Frequency on the Number of Panels. Construction of Unique Buildings and Structures, 97(4), 9703. https://doi.org/10.4123/CUBS.97.3
Kirsanov, M. N. (2023). Formulas for Fundamental Natural Frequency of Plane Periodic Truss. Structural Mechanics of Engineering Constructions and Buildings, 19(6), 551–559. https://doi.org/10.22363/1815-5235-2023-19-6-551-559
Kirsanov, M. N., & Vorobev, O. V. (2021). Calculating of a spatial cantilever truss natural vibration frequency with an arbitrary number of panels: analytical solution. Construction of Unique Buildings and Structures, 94, 9402. https://doi.org/10.4123/CUBS.94.2
Laory, I., Trinh, T. N., Smith, I. F. C., & Brownjohn, J. M. W. (2014). Methodologies for predicting natural frequency variation of a suspension bridge. Engineering Structures, 80, 211–221. https://doi.org/10.1016/j.engstruct.2014.09.001
Luan, L. C., & N, K. M. (2024). Formula for the Dependence of the Fundamental Natural Frequency of a Regular Truss on the Number of Panels. 2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 1–5. https://doi.org/10.1109/REEPE60449.2024.10479871
Marendić, A., Paar, R., & Damjanović, D. (2017). Measurement of Bridge Dynamic Displacements and Natural Frequncies by RTS. Gradevinar, 69(4), 281–294. https://doi.org/10.14256/JCE.1804.2016
Maulidiya, S., & Rusli. (2017). Penentuan Frekuensi Natural Dan Arah Pergerakan Gelombang (Studi Kasus: Jembatan Soekarno Hatta Kota Malang). JURNAL MIPA UNSRAT ONLINE, 6(1), 1–7.
Mitoulis, S. A., Domaneschi, M., Cimellaro, G. P., & Casas, J. R. (2022). Bridge and transport network resilience – a perspective. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 175(3), 138–149. https://doi.org/10.1680/jbren.21.00055
Permata, R., Andika, M. G., Syariefatunnisa, Risdhiawan, E., Hermawan, B., & Noordiana, I. (2017). Wind tunnel test of musi VI bridge. 3rd International Conference on Construction and Building Engineering (ICONBUILD), 020005-1-020005–020007. https://doi.org/10.1063/1.5011485
Prawestri, D., Sutrisno, W., & Priyanto, A. (2021). Perbandingan Analisis Frekuensi Alami Jembatan Gantung Dengan Menggunakan Aplikasi Accelerometer Meter Dan Software (Studi Kasus Jembatan Gantung Kemiri Buluharjo Karangmojo). Jurnal Rekayasa Dan Inovasi Teknik Sipil, 6(1), 54–56.
Qin, Y., & Cui, Y. (2024). Investigation of the Natural Frequency Change of the Suspension Bridge Under Operating Conditions. The Baltic Journal of Road and Bridge Engineering, 19(3), 43–68. https://doi.org/10.7250/bjrbe.2024-19.642
Sahir, S. H. (2021). Metodologi Penelitian (T. Koryati, Ed.). Penerbit KBM Indonesia.
Santoso, H. T., Hidayatiningrum, L. F., Utomo, A. B., Hartono, J., & Masrianto. (2021). Analisa Korelasi Antara Frekuensi dengan Bentang Jembatan Berdasarkan Uji Dinamik (Correlation Analysis Between Frequency and Bridge Span Based on Dynamic Test). Jurnal Jalan-Jembatan, 38(1), 60–72.
Suryani, & Hendriyadi. (2016). Metode Riset Kuantitatif: Teori dan Aplikasi pada Penelitian Bidang Manajemen dan Ekonomi Islam. Prenadamedia Group.
Sutrisno, W., Chandra, L., & Deonanda, A. (2021). Perbandingan Frekuensi Alami Jembatan Karangsemut Menggunakan Accelerometer Dan Sap2000. Jurnal Rekayasa Dan Inovasi Teknik Sipil, 6(2), 13–18.
Taherkhani, A., Mo, W., Bell, E., & Han, F. (2024). Towards equitable infrastructure asset management: Scour maintenance strategy for aging bridge systems in flood-prone zones using deep reinforcement learning. Sustainable Cities and Society, 114, 105792. https://doi.org/10.1016/j.scs.2024.105792
Tan, G., Li, H., Wang, W., Kong, Q., Jiang, L., Zhang, S., & Wei, X. (2023). A rapid evaluation method based on natural frequency for post-earthquake traffic capacity of small and medium span bridges. Engineering Structures, 280, 115681. https://doi.org/10.1016/j.engstruct.2023.115681
Torres, M., Cifuentes, L., Pradena, M., & Dechent, P. (2022). Influence of Bridge Deterioration on Its Natural Frequencies and Serviceability (pp. 1270–1277). https://doi.org/10.1007/978-3-030-91877-4_144
Vital, W., Silva, R., de Morais, M. V. G., Emidio Sobrinho, B., Pereira, R., & Evangelista, F. (2023). Application of bridge information modelling using laser scanning for static and dynamic analysis with concrete damage plasticity. Alexandria Engineering Journal, 79, 608–628. https://doi.org/10.1016/j.aej.2023.08.023
Wakchaure, S., Jayan, V., & Jha, K. (2013). Factors affecting priority of maintenance for bridges. Indian Concrete Journal, 87(2), 37–45.
Wodzinowski, R., Sennah, K., & Afefy, H. M. (2018). Free vibration analysis of horizontally curved composite concrete-steel I-girder bridges. Journal of Constructional Steel Research, 140, 47–61. https://doi.org/10.1016/j.jcsr.2017.10.011
Xiao, Q., Huang, H., & Tang, C. (2023). Quantitative analysis of the importance and correlation of urban bridges and roads in the study of road network vulnerability. Advances in Bridge Engineering, 4(1), 18. https://doi.org/10.1186/s43251-023-00096-z
Xie, X., Huang, Y., & Qin, X. (2021). A New Composite Truss Bridge and a Study on Its Dynamic Characteristics with FE and Experimental Methods. KSCE Journal of Civil Engineering, 25(3), 931–947. https://doi.org/10.1007/s12205-021-0655-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ainil Mardhiyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.