Perancangan Antena Mikrostrip Dual Band Profil Rendah Menggunakan Teknik DGS Dan Meander Line Untuk Aplikasi GNSS
DOI:
https://doi.org/10.51510/trekritel.v1i1.412Keywords:
Global Navigation Satellite System (GNSS), low-profile dual-band microstrip antenna, Defected Ground System (DGS) dan Meander Line (ML)Abstract
Some of the parameters that are considered to measure GNSS antenna performance are polarization, polarization, bandwidth, return loss and antenna dimensions. This study aims to design a low profile dual band microstrip antenna using the Defected Ground System (DGS) and Menader Line (ML) techniques for GNSS applications. In this research, the DGS technique is used to increase the bandwidth while the ML technique is used to reduce the antenna dimensions. This antenna design uses a FR4 Epoxy substrate with a thickness of 1.6 mm. To design and analyze the antenna, the CST Studio Suite 2016 simulator is used. The simulator is equipped with an optimizer feature that can optimize antenna parameters. Based on the design results, an antenna with a size of 183.6 x 183.6 x 1.6 mm3 has been produced. The antenna works in dual band, namely in the band 1247 - 1294 MHz (bandwidth - 3.70% BW) for radio navigation satellite services Glonass (G2) and Galileo (E6). And in the band 1539-1606 MHz (4.26% BW) for the Galileo (E1) flight radio navigation service, Compass and GPS (L1).
Keywords: Global Navigation Satellite System (GNSS), low-profile dual-band microstrip antenna, Defected Ground System (DGS) dan Meander Line (ML).
References
[2] J. Yuan, J. Zheng, and Z. D. Chen, “A Compact Meandered Ring Antenna Loaded with Parasitic Patches and a Slotted Ground for Global Navigation Satellite Systems,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6835–6843, 2018, doi: 10.1109/TAP.2018.2869209.
[3] K. . Rama Rao, B.; Kunysz, W.; Fante, R.; McDonald, GPS/GNSS Antennas, vol. 53, no. 9. Boston London: Artech House, 2013.
[4] S. Tan, GNSS Systems and Engineering. Beijing China: John Wiley, 2018.
[5] M. Pinem, M. Zulfin, S. Suherman, P. M. Sihombing, and S. I. Rezkika, “Characterization of Outdoor to Indoor Propagation in Urban Area by Using A Combination of COST231 Walfisch-Ikegami and COST231 Multiwall Models in 1800 Mhz and 2100 Mhz,” Int. J. Eng. Technol., vol. 7, pp. 698–702, 2018, [Online]. Available: website: www.sciencepubco.com/index.php/IJET.
[6] J. H. and A. S. A. R. Abubar, Usman, M. W. Sitopu, P. M. Sihombing, “Microstrip Antenna Design with Left Handed Metamaterial (LHM) for Automatic Dependent Surveillance Broadcast (ADS-B),” 2020 4rd Int. Conf. Electr. Telecommun. Comput. Eng., pp. 103–106, 2020, doi: 10.1109/ELTICOM50775.2020.9230510.
[7] R. Garg, P. Bhartia, I. Bahl, and A. Ittibon, Microstrip Antenna Design Handbook. Boston London: Artech Haouse, 2001.
[8] Y. Cao, S. W. Cheung, and T. I. Yuk, “A simple planar polarization reconfigurable monopole antenna for GNSS/PCS,” IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 500–507, 2015, doi: 10.1109/TAP.2014.2382091.
[9] P. M. Sihombing, H. A. Samosir, L. T. Hutabarat, M. W. Sitopu, J. Margolang and J. Hidayat, “Microstrip Antenna Design Using Meander Line Technique for Communication between Pilot and Air Traffic Controller in VHF A/G Band,” 2020 4rd Int. Conf. Electr. Telecommun. Comput. Eng., pp. 111–114, 2020, doi: 10.1109/ELTICOM50775.2020.9230499.
[10] A. Saxena, S. Joshi, A. Gupta, S. Saxena, and D. Kumar, “Gain and Bandwidth Enhancement of CPW-Fed Patch Antenna for Wideband Applications,” IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. RTEICT Proc., pp. 1622–1625, 2016.
[11] H. C. Huang, J. C. Lu, and P. Hsu, “A Compact Dual-Band Printed Yagi-Uda Antenna for GNSS and CMMB Applications,” IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 2342–2348, 2015, doi: 10.1109/TAP.2015.2406914.
[12] K. Wei, J. Y. Li, L. Wang, R. Xu, and Z. J. Xing, “A New Technique to Design Circularly Polarized Microstrip Antenna by Fractal Defected Ground Structure,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3721–3725, 2017, doi: 10.1109/TAP.2017.2700226.
[13] A. D. Chaudhari, P. Chand, R. Keley, and K. P. Ray, “Design and Development of Printed Antennas for Satellite-Based AIS Applications,” Int. Conf. Microw. Integr. Circuits, Photonics Wirel. Networks, pp. 341–344, 2019.
[14] M. K. Emara, J. Hautcoeur, G. Panther, J. S. Wight, and S. Gupta, “Surface impedance engineered low-profile dual-band grooved-dielectric choke ring for GNSS applications,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 2008–2011, 2019, doi: 10.1109/TAP.2019.2891553.
[15] C. Sun, Z. Wu, and B. Bai, “A Novel Compact Wideband Patch Antenna for GNSS Application,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7334–7339, 2017, doi: 10.1109/TAP.2017.2761987.
[16] Z. Yao and M. Lu, Next-Generation GNSS Signal Design. Beijing, China: Springer.
[17] M. Putri, S. A. Lubis, and S. Aryza, “DESIGN OF SECURITY TOOLS USING SENSOR LIGHT DEPENDENT RESISTOR (LDR) THROUGH MOBILE PHONE Dikti funding indonesia View project Quality Assurance in Knowledge Data Warehouse View project DESIGN OF SECURITY TOOLS USING SENSOR LIGHT DEPENDENT RESISTOR (LDR) ,” Artic. Int. J. Innov. Res. Comput. Commun. Eng., no. November, 2018, [Online]. Available: https://www.researchgate.net/publication/328759421.
[18] R. Rahmaniar and M. Putri, “The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis,” J. Phys. Conf. Ser., vol. 970, no. 1, 2018, doi: 10.1088/1742-6596/970/1/012015.
[19] M. Putri and F. I. Pasaribu, “Analisis Kualitas Daya Akibat Beban Reaktansi Induktif ( X L ) di Industri,” J. Electr. Technol., vol. 3, no. 2, pp. 81–85, 2018.