SINTESIS PELUMAS BIODEGRADABLE DARI LIMBAH MINYAK GORENG MELALUI PENDEKATAN RESPON PERMUKAAN
DOI:
https://doi.org/10.51510/sinergipolmed.v6i1.1934Keywords:
Biopelumas, limbah minyak goreng, metode respon permukaan, sifat fisikokimiaAbstract
Limbah minyak goreng digunakan untuk sintesis biopelumas melalui reaksi poliesterifikasi. Biopelumas dibuat dari fatty acid methyl esters (FAMEs) limbah minyak goreng dengan etilen glikol (EG). Reaksi dilakukan dengan menggunakan katalis Natrium Methoxide. Biopelumas adalah pelumas biodegradable potensial yang dapat digunakan dalam aplikasi pelumas industri. Efek dari perubahan kondisi operasi seperti suhu, rasio molar reaktan, waktu reaksi dan pembebanan katalis dipelajari. Dalam penelitian ini, model yang digunakan untuk sintesis bio-pelumas melalui reaksi transesterifikasi melibatkan desain eksperimen menggunakan software Stat-Ease Design-Expert-10 dengan desain eksperimen yang mencakup tiga faktor input numerik (ethylene glycol, konsentrasi katalis, dan waktu) dan satu output respons (yield biopelumas). Dengan menentukan tiga level untuk setiap faktor input, penelitian bertujuan untuk mencari kombinasi optimal dari faktor-faktor tersebut. Penelitian ini mengoptimalkan variabel proses pada produksi bahan dasar pelumas biodegradable dari minyak goreng limbah. Desain komposit sentral digunakan untuk memaksimalkan interaksi kimia antara J. curcas methyl ester dan ethylene glycol (EG) sebagai poliol. Sebanyak 20 uji coba dilakukan untuk memeriksa suhu reaksi, waktu, dan rasio molar etilenglikol-tofattyacidmethylester (EG-ke-FAME). Sebuah model statistik menunjukkan bahwa hasil konversi maksimum biopelumas minyak goreng limbah (BL WCO) adalah 92,48% dalam kondisi reaksi optimal berikut: 128,95°C, 202,40 menit, dan rasio molar etilen glikol terhadap asam lemak metil ester (EG-ke-FAME) sebesar 3,87:1. Pada kondisi optimal ini, rata-rata hasil biopelumas jatropha (JBL) sebesar 94,12% dicapai dalam kondisi eksperimental, dan nilai ini berada dalam kisaran yang diprediksi (92,48%) oleh model. Model kuadrat memprediksi keluaran biopelumas (R2 = 0,9919). Biopelumas yang disintesis memenuhi persyaratan Viscosity Grade 62 (ISO VG 62) yang ditetapkan oleh Organisasi Internasional untuk Standardisasi.
References
Agu, C. M., Ani, K. A., Ani, O. N., Nnaji, P. C., Kadurumba, C. H., & Esonye, C. (2024). Application of efficient soft computing approaches for modeling methyl ester yield from Azadirachta Indica (Neem) seed oil: A comparative study of RSM, ANN and ANFIS. Green Technologies and Sustainability, 2(1), 100057. https://doi.org/https://doi.org/10.1016/j.grets.2023.100057
Appiah, G., Tulashie, S. K., Akpari, E. E. A., Rene, E. R., & Dodoo, D. (2022). Biolubricant production via esterification and transesterification processes: Current updates and perspectives. International Journal of Energy Research, 46(4), 3860-3890. https://doi.org/ https://doi.org/10.1002/er.7453
Aravind, A., Joy, M., & Nair, K. P. (2015). Lubricant properties of biodegradable rubber tree seed (Hevea brasiliensis Muell. Arg) oil. Industrial crops and products, 74, 14-19. https://doi.org/http://dx.doi.org/10.1016/j.indcrop.2015.04.014
Farfan-Cabrera, L. I., Gallardo-Hernández, E. A., & Pérez-González, J. (2017). Compatibility study of common sealing elastomers with a biolubricant (Jatropha oil). Tribology International, 116, 1-8. https://doi.org/http://dx.doi.org/10.1016/j.triboint.2017.06.039
Gul, M., Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Mujtaba, M. A., Yousuf, S., Bashir, M. N., Ahmed, W., Yusoff, M. N. A. M., & Noor, S. (2021). RSM and Artificial Neural Networking based production optimization of sustainable Cotton bio-lubricant and evaluation of its lubricity & tribological properties. Energy Reports, 7, 830-839. https://doi.org/https://doi.org/10.1016/j.egyr.2021.01.033
Heikal, E. K., Elmelawy, M., Khalil, S. A., & Elbasuny, N. (2017). Manufacturing of environment friendly biolubricants from vegetable oils. Egyptian Journal of Petroleum, 26(1), 53-59.
Joshi, J. R., Bhanderi, K. K., & Patel, J. V. (2023). A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications. Journal of the Indian Chemical Society, 100(1), 100849. https://doi.org/https://doi.org/10.1016/j.jics.2022.100849
Joshi, J. R., Bhanderi, K. K., Patel, J. V., & Karve, M. (2023). Chemical modification of waste cooking oil for the biolubricant production through transesterification process. Journal of the Indian Chemical Society, 100(3), 100909. https://doi.org/https://doi.org/10.1016/j.jics.2023.100909
Karmakar, G., Ghosh, P., & Sharma, B. K. (2017). Chemically modifying vegetable oils to prepare green lubricants. Lubricants, 5(4), 44. https://doi.org/https://doi.org/10.3390/lubricants5040044
McNutt, J. (2016). Development of biolubricants from vegetable oils via chemical modification. Journal of industrial and Engineering Chemistry, 36, 1-12. https://doi.org/https://doi.org/10.1016/j.jiec.2016.02.008
Milano, J., Ong, H. C., Masjuki, H. H., Silitonga, A. S., Chen, W.-H., Kusumo, F., Dharma, S., & Sebayang, A. H. (2018). Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy conversion and management, 158, 400-415. https://doi.org/https://doi.org/10.1016/j.enconman.2017.12.027
Mobarak, H., Mohamad, E. N., Masjuki, H. H., Kalam, M., Al Mahmud, K., Habibullah, M., & Ashraful, A. (2014). The prospects of biolubricants as alternatives in automotive applications. Renewable and sustainable energy reviews, 33, 34-43.
Mohamed, N., Hamidon, M. L. H., Jumadi, R., Khalid, A., Jaat, N., Salleh, H., & Samion, S. (2022). Analysis of the Biodegradable Lubricant in Internal Combustion Engine. Journal of Automotive Powertrain and Transportation Technology, 2(1), 47-55.
Negi, R. S., Singh, R. K., Atray, N., & Singh, S. K. (2023). Potential valorization of used cooking oil into novel biolubricating grease through chemical modification and its performance evaluation. Industrial crops and products, 205, 117555. https://doi.org/https://doi.org/10.1016/j.indcrop.2023.117555
Otabor, G., Ifijen, I., Mohammed, F., Aigbodion, A., & Ikhuoria, E. (2019). Alkyd resin from rubber seed oil/linseed oil blend: A comparative study of the physiochemical properties. Heliyon, 5(5), e01621.
Panchal, T. M., Patel, A., Chauhan, D., Thomas, M., & Patel, J. V. (2017). A methodological review on bio-lubricants from vegetable oil based resources. Renewable and Sustainable Energy Reviews, 70, 65-70. https://doi.org/http://dx.doi.org/10.1016/j.rser.2016.11.105
Perera, M., Yan, J., Xu, L., Yang, M., & Yan, Y. (2022). Bioprocess development for biolubricant production using non-edible oils, agro-industrial byproducts and wastes. Journal of Cleaner Production, 357, 131956. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131956
Prasannakumar, P., Edla, S., Thampi, A. D., Arif, M., & Santhakumari, R. (2022). A comparative study on the lubricant properties of chemically modified Calophyllum inophyllum oils for bio-lubricant applications. Journal of Cleaner Production, 339, 130733. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130733
Prasannakumar, P., Sankarannair, S., Bose, C., Santhakumari, R., & Jyothi, S. N. (2023). Influence of techniques on synthesizing cashew nut shell oil as a prospective biolubricant on its physicochemical, tribological, and thermal behaviors. Journal of Cleaner Production, 401, 136717. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136717
Selvakumar, P., & Sivashanmugam, P. (2019). Ultrasound assisted oleaginous yeast lipid extraction and garbage lipase catalyzed transesterification for enhanced biodiesel production. Energy conversion and management, 179, 141-151.
Soni, S., & Agarwal, M. (2014). Lubricants from renewable energy sources–a review. Green Chemistry letters and reviews, 7(4), 359-382.
Syahir, A., Zulkifli, N., Masjuki, H., Kalam, M., Alabdulkarem, A., Gulzar, M., Khuong, L., & Harith, M. (2017). A review on bio-based lubricants and their applications. Journal of Cleaner Production, 168, 997-1016. https://doi.org/http://dx.doi.org/10.1016/j.jclepro.2017.09.106
Syaima, M., Ong, K., Noor, I. M., Zamratul, M., Brahim, S., & Hafizul, M. (2015). The synthesis of bio-lubricant based oil by hydrolysis and non-catalytic of palm oil mill effluent (POME) using lipase. Renewable and Sustainable Energy Reviews, 44, 669-675. https://doi.org/https://doi.org/10.1016/j.rser.2015.01.005
U Dabai, M., J Owuna, F., A Sokoto, M., & L Abubakar, A. (2018). Assessment of quality parameters of ecofriendly biolubricant from waste cooking palm oil. Asian Journal of Applied Chemistry Research, 1(4), 1-11. https://doi.org/10.9734/AJACR/2018/v1i49691
Ude, C. N., Igwilo, C. N., Nwosu-Obieogu, K., Nnaji, P. C., Oguanobi, C. N., Amulu, N. F., Eze, C. N., & Omenihu, U. C. (2023). Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA). Sustainable Chemistry for the Environment, 4, 100050. https://doi.org/https://doi.org/10.1016/j.scenv.2023.100050
Wulandari, W. N., Darsin, M., & Wibowo, R. K. K. (2020). Study on characteristics of calophyllum inophyllum oil as a new alternative cutting fluid. AIP Conference Proceedings,
Zaid, M., Singh, Y., Kumar, A., & Gupta, S. (2020). Development of the Calophyllum inophyllum based biolubricant and their tribological analysis at different conditions. Materials Today: Proceedings, 26, 2582-2585. https://doi.org/https://doi.org/10.1016/j.matpr.2020.02.546
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Siti Maretia Benu, Eka Putra Dairi Boangmanalu, Angga Bahri Pratama, Muhammad Anhar Pulungan

This work is licensed under a Creative Commons Attribution 4.0 International License.