LAJU KOROSI BAJA KARBON RINGAN PADA BIOPELUMAS DARI LIMBAH MINYAK GORENG
DOI:
https://doi.org/10.51510/sinergipolmed.v6i1.1933Keywords:
Biopelumas, limbah minyak goreng, laju korosiAbstract
Limbah minyak goreng digunakan untuk sintesis biopelumas melalui reaksi poliesterifikasi. Biopelumas dibuat dari limbah minyak goreng dengan etilen glikol (EG). Reaksi dilakukan dengan menggunakan katalis Natrium Methoxide. Biopelumas adalah pelumas biodegradable potensial yang dapat digunakan dalam aplikasi pelumas industri. Penelitian ini bertujuan untuk mengamati perilaku korosi baja karbon ringan yang terendam dalam campuran biopelumas-pelumas komersil dengan konsentrasi tertentu (Biol10, Biol20, Biol30, Biol40) selama 768 jam pada temperatur ruangan. Pengamatan permukaan baja karbon ringan menggunakan scanning electron microscope (SEM) dilakukan dan perhitungan laju korosi. Setelah perendaman di uji bilangan asam dan dianalisis pengaruh korosi baja karbon ringan pada biopelumas. Dengan demikian, penelitian ini memberikan wawasan yang penting mengenai dampak biopelumas terhadap korosi baja karbon ringan dan dapat menjadi kontribusi signifikan dalam pengembangan strategi mitigasi korosi yang efektif. Hasil penelitian yang didapatkan adalah biopelumas dari limbah minyak goreng sesuai dengan standar ISO VG 100. Penelitian menunjukkan bahwa semakin tinggi konsentrasi biopelumas dalam campuran (BIOL20, BIOL30, dan BIOL40), semakin rendah laju korosi yang diamati seiring dengan peningkatan waktu perendaman. Namun, campuran BIOL10 menunjukkan laju korosi yang hampir sama dengan pelumas komersil, bahkan lebih baik pada perendaman yang lebih lama. Nilai asam yang diamati menunjukkan peningkatan pada hampir seluruh pelumas yang menunjukkan kupon logam (baja ringan) telah mengalami proses oksidasi, yang pada akhirnya meningkatkan konsentrasi asam dalam campuran biopelumas.
References
Akhabue, C., Aisien, F., & Ojo, C. (2014). The effect of Jatropha oil biodiesel on the corrosion rates of aluminium and mild carbon steel. Biofuels, 5(5), 545-550.
Appiah, G., Tulashie, S. K., Akpari, E. E. A., Rene, E. R., & Dodoo, D. (2022). Biolubricant production via esterification and transesterification processes: Current updates and perspectives. International Journal of Energy Research, 46(4), 3860-3890. doi: https://doi.org/10.1002/er.7453
Aravind, A., Joy, M., & Nair, K. P. (2015). Lubricant properties of biodegradable rubber tree seed (Hevea brasiliensis Muell. Arg) oil. Industrial crops and products, 74, 14-19. doi:http://dx.doi.org/10.1016/j.indcrop.2015.04.014
Arumugam, S., Ellappan, R., Sangavi, S., Sriram, G., & Ramakrishna, P. (2018). Feasibility analysis of biodegradable automotive lubricant: an evaluation of material–lubricant compatibility in a corrosion perspective. Arabian Journal for Science and Engineering, 43, 1345-1368.
Arumugam, S., Ellappan, R., & Sriram, G. (2018). Bio Lubricant-Biodiesel Combination of IC Engines: A Review on Corrosion Horizon and Perspective. Advanced Science, Engineering and Medicine, 10(3-4), 277-281.
Arumugam, S., Ellappan, R., & Sriram, G. (2021). Degradation of engine components upon exposure to chemically modified vegetable oil-Based automotive lubricant. Journal of the Indian Chemical Society, 98(11), 100227.
Arumugam, S., Sriram, G., Rajmohan, T., & Paulo Davim, J. (2016). Multi-objective Optimization of Engine Parameters While Bio-lubricant–Biofuel Combination of VCR Engine Using Taguchi-Grey Approach. Ecotribology: Research Developments, 105-123.
Bapat, A., Pradhan, S., & Madankar, C. S. (2024). Oil and Fats as Raw Materials as Corrosion Inhibitors and Biolubricants. Oils and Fats as Raw Materials for Industry, 195-229. doi:https://doi.org/10.1002/9781119910558.ch
Cao, D., Matsakas, L., Zhang, J., Dong, L., Shi, Y., Zhu, J., . . . Mu, L. (2024). Biolubricant. Sustainable Production Innovations: Bioremediation and Other Biotechnologies, 1-56.
Cavalcanti, E. D., Aguieiras, E. C., da Silva, P. R., Duarte, J. G., Cipolatti, E. P., Fernandez-Lafuente, R., . . . Freire, D. M. (2018). Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel, 215, 705-713. doi:https://doi.org/10.1016/j.fuel.2017.11.119
Cecilia, J. A., Ballesteros Plata, D., Alves Saboya, R. M., Tavares de Luna, F. M., Cavalcante Jr, C. L., & Rodríguez-Castellón, E. (2020). An overview of the biolubricant production process: Challenges and future perspectives. Processes, 8(3), 257.
Chandran, D., Ng, H. K., Lau, H. L. N., Gan, S., & Choo, Y. M. (2016). Investigation of the effects of palm biodiesel dissolved oxygen and conductivity on metal corrosion and elastomer degradation under novel immersion method. Applied Thermal Engineering, 104, 294-308.
Crown, O. (2023). Fuels and lubricants -hydraulic fluids. In: https://www.crownoil.co.uk/guides/hydraulic-oil-guide/.
Dharma, S., Silitonga, A., Shamsuddin, A., Sebayang, A., Milano, J., Sebayang, R., . . . Ginting, B. (2023). Properties and corrosion behaviors of mild steel in biodiesel-diesel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3887-3899.
Ellappan, R., Arumugam, S., Sundararajan, R., & Venkatesh, K. (2021). Comparative Corrosion Behaviour of Ferrous and Non-ferrous Metals in Bio-lubricant and Bio-diesel Environment. Paper presented at the Advances in Materials and Manufacturing Engineering: Select Proceedings of ICMME 2019.
ESDM. (2023). Handbook Of Energy & Economic Statistics Of Indonesia: Kementerian Energi dan Sumber Daya Mineral.
Farfan-Cabrera, L. I., Gallardo-Hernández, E. A., & Pérez-González, J. (2017). Compatibility study of common sealing elastomers with a biolubricant (Jatropha oil). Tribology International, 116, 1-8. doi:http://dx.doi.org/10.1016/j.triboint.2017.06.039
Fasogbon, S., & Olagoke, O. (2016). Influence of temperature on corrosion characteristics of metals in used cooking oil methyl ester. The International Journal Of Engineering And Science (IJES), 5(4), 71-75.
Gulzar, M., Masjuki, H., Kalam, M., Varman, M., Zulkifli, N., Mufti, R., & Zahid, R. (2016). Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 18, 1-25.
Gupta, A. R., & Rathod, V. K. (2018). Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: Optimization and kinetic studies. Renewable Energy, 121, 757-767.
Ifeanyi-Nze, F. O., & Akhiehiero, E. T. (2023). Optimization of the process variables on biodegradable industrial lubricant basestock synthesis from Jatropha curcas seed oil via response surface methodology. Frontiers in Energy Research, 11, 1169565. doi:https://doi.org/10.3389/fenrg.2023.1169565
Joshi, J. R., Bhanderi, K. K., & Patel, J. V. (2023). A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications. Journal of the Indian Chemical Society, 100(1), 100849. doi:https://doi.org/10.1016/j.jics.2022.100849
Joshi, J. R., Bhanderi, K. K., Patel, J. V., & Karve, M. (2023). Chemical modification of waste cooking oil for the biolubricant production through transesterification process. Journal of the Indian Chemical Society, 100(3), 100909. doi:https://doi.org/10.1016/j.jics.2023.100909
Kalam, M., Masjuki, H., Cho, H. M., Mosarof, M., Mahmud, M. I., Chowdhury, M. A., & Zulkifli, N. (2017). Influences of thermal stability, and lubrication performance of biodegradable oil as an engine oil for improving the efficiency of heavy duty diesel engine. Fuel, 196, 36-46. doi:https://doi.org/10.1016/j.fuel.2017.01.071
Kania, D., Yunus, R., Omar, R., Rashid, S. A., & Jan, B. M. (2015). A review of biolubricants in drilling fluids: Recent research, performance, and applications. Journal of petroleum science and engineering, 135, 177-184. doi:https://doi.org/10.1016/j.petrol.2015.09.021
Koutsouki, A., Tegou, E., Badeka, A., Kontakos, S., Pomonis, P., & Kontominas, M. (2016). In situ and conventional transesterification of rapeseeds for biodiesel production: The effect of direct sonication. Industrial crops and products, 84, 399-407.
Kugelmeier, C. L., Monteiro, M. R., da Silva, R., Kuri, S. E., Sordi, V. L., & Della Rovere, C. A. (2021). Corrosion behavior of carbon steel, stainless steel, aluminum and copper upon exposure to biodiesel blended with petrodiesel. Energy, 226, 120344.
Lee, C. T., Lee, M. B., Chong, W. W. F., Samion, S., & Skudai, U. (2022). Nano-frictional investigation on boundary lubricity of oleic acid, methyl oleate and trimethylolpropane trioleate. Jurnal Tribologi, 32, 1-15.
Lelawati, L. (2022). PENGARUH PEMANASAN DAN QUENCHING DENGAN AIR LAUT TERHADAP STRUKTUR MIKRO BAJA KARBON SEDANG. Jurnal Redoks, 7(1), 62-72.
Liu, S., Nie, K., Zhang, X., Wang, M., Deng, L., Ye, X., . . . Tan, T. (2014). Kinetic study on lipase-catalyzed biodiesel production from waste cooking oil. Journal of Molecular Catalysis B: Enzymatic, 99, 43-50. doi:https://doi.org/10.1016/j.molcatb.2013.10.009
Mobarak, H., Mohamad, E. N., Masjuki, H. H., Kalam, M., Al Mahmud, K., Habibullah, M., & Ashraful, A. (2014). The prospects of biolubricants as alternatives in automotive applications. Renewable and sustainable energy reviews, 33, 34-43.
Mohadesi, M., Aghel, B., Maleki, M., & Ansari, A. (2019). Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor. Renewable Energy, 136, 677-682.
Mohamad Aziz, N. A., Yunus, R., Kania, D., & Abd Hamid, H. (2021). Prospects and challenges of microwave-combined technology for biodiesel and biolubricant production through a transesterification: A review. Molecules, 26(4), 788.
Mohamed, N., Hamidon, M. L. H., Jumadi, R., Khalid, A., Jaat, N., Salleh, H., & Samion, S. (2022). Analysis of the Biodegradable Lubricant in Internal Combustion Engine. Journal of Automotive Powertrain and Transportation Technology, 2(1), 47-55.
Mulyana, C., Saad, A. H., Nurhilal, O., & Yusuf, M. F. (2015). Penentuan Umur Sisa Pipa (Tube) Pada Pengilangan Minyak (Halaman 18 sd 22). Jurnal Fisika Indonesia, 19(55).
Negi, R. S., Singh, R. K., Atray, N., & Singh, S. K. (2023). Potential valorization of used cooking oil into novel biolubricating grease through chemical modification and its performance evaluation. Industrial crops and products, 205, 117555. doi:https://doi.org/10.1016/j.indcrop.2023.117555
Nugroho, A., Haryadi, G. D., Ismail, R., & Kim, S. J. (2016). Risk based inspection for atmospheric storage tank. Paper presented at the AIP Conference Proceedings.
Otabor, G., Ifijen, I., Mohammed, F., Aigbodion, A., & Ikhuoria, E. (2019). Alkyd resin from rubber seed oil/linseed oil blend: A comparative study of the physiochemical properties. Heliyon, 5(5), e01621.
Paar, A. (2023). ISO viscosity classification - ISO 3448. In.
Pambudi, H. R. JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG 2016.
Panchal, T. M., Patel, A., Chauhan, D., Thomas, M., & Patel, J. V. (2017). A methodological review on bio-lubricants from vegetable oil based resources. Renewable and Sustainable Energy Reviews, 70, 65-70. doi:http://dx.doi.org/10.1016/j.rser.2016.11.105
Perera, M., Yan, J., Xu, L., Yang, M., & Yan, Y. (2022). Bioprocess development for biolubricant production using non-edible oils, agro-industrial byproducts and wastes. Journal of Cleaner Production, 357, 131956. doi:https://doi.org/10.1016/j.jclepro.2022.131956
Prasannakumar, P., Edla, S., Thampi, A. D., Arif, M., & Santhakumari, R. (2022). A comparative study on the lubricant properties of chemically modified Calophyllum inophyllum oils for bio-lubricant applications. Journal of Cleaner Production, 339, 130733. doi:https://doi.org/10.1016/j.jclepro.2022.130733
Prasannakumar, P., Sankarannair, S., Bose, C., Santhakumari, R., & Jyothi, S. N. (2023). Influence of techniques on synthesizing cashew nut shell oil as a prospective biolubricant on its physicochemical, tribological, and thermal behaviors. Journal of Cleaner Production, 401, 136717. doi:https://doi.org/10.1016/j.jclepro.2023.136717
Putra, M. D., Nata, I. F., & Irawan, C. (2020). Biodiesel production from waste cooking oil using heterogeneous catalyst: Biodiesel product data and its characterization. Data in brief, 28.
Qi, D., & Lee, C.-F. (2014). Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 504-507.
Rocabruno-Valdés, C., González-Rodriguez, J., Díaz-Blanco, Y., Juantorena, A., Muñoz-Ledo, J., El-Hamzaoui, Y., & Hernández, J. (2019). Corrosion rate prediction for metals in biodiesel using artificial neural networks. Renewable Energy, 140, 592-601.
Ruggiero, A., D’Amato, R., Merola, M., Valašek, P., & Müller, M. (2017). Tribological characterization of vegetal lubricants: Comparative experimental investigation on Jatropha curcas L. oil, Rapeseed Methyl Ester oil, Hydrotreated Rapeseed oil. Tribology International, 109, 529-540. doi:https://doi.org/10.1016/j.tribont.2017.01.030
Salih, N., & Salimon, J. (2021). A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Res. Appl. Chem, 11(5), 13303-13327. doi:https://doi.org/10.33263/BRIAC115.1330313327
Saluja, R. K., Kumar, V., & Sham, R. (2016). Stability of biodiesel–A review. Renewable and Sustainable Energy Reviews, 62, 866-881.
Samuel, O., Ashiedu, F., & Oreko, B. (2016). Analysis of coconut ethyl ester (biodiesel) and fossil diesel blending: properties and corrosion characteristics. Nigerian Journal of Technology, 35(1), 107-113.
Singh, Y., Farooq, A., Raza, A., Mahmood, M. A., & Jain, S. (2017). Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: A review. Process Safety and Environmental Protection, 111, 701-713.
Slepski, P., Gerengi, H., Jazdzewska, A., Orlikowski, J., & Darowicki, K. (2014). Simultaneous impedance and volumetric studies and additionally potentiodynamic polarization measurements of molasses as a carbon steel corrosion inhibitor in 1M hydrochloric acid solution. Construction and Building Materials, 52, 482-487.
Soni, S., & Agarwal, M. (2014). Lubricants from renewable energy sources–a review. Green Chemistry letters and reviews, 7(4), 359-382.
Sterpu, A. E., Simedrea, B. G., Chis, T. V., & Săpunaru, O. V. (2024). Corrosion Effect of Biodiesel-Diesel Blend on Different Metals/Alloy as Automotive Components Materials. Fuels, 5(1), 17-32.
Sun, G., Li, Y., Cai, Z., Teng, Y., Wang, Y., & Reaney, M. J. (2017). K2CO3-loaded hydrotalcite: a promising heterogeneous solid base catalyst for biolubricant base oil production from waste cooking oils. Applied catalysis b: environmental, 209, 118-127. doi:https://doi.org/10.1016/j.apcatb.2017.02.078
Syaima, M., Ong, K., Noor, I. M., Zamratul, M., Brahim, S., & Hafizul, M. (2015). The synthesis of bio-lubricant based oil by hydrolysis and non-catalytic of palm oil mill effluent (POME) using lipase. Renewable and Sustainable Energy Reviews, 44, 669-675. doi:https://doi.org/10.1016/j.rser.2015.01.005
Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2016). Impact of metals on corrosive behavior of biodiesel–diesel–ethanol (BDE) alternative fuel. Renewable Energy, 94, 1-9.
Thangavelu, S. K., & Ezhumalai, P. (2017). Corrosion behavior of low carbon steel in bioethanol fuel blends. Solid State Phenomena, 263, 115-119.
Ude, C. N., Igwilo, C. N., Nwosu-Obieogu, K., Nnaji, P. C., Oguanobi, C. N., Amulu, N. F., . . . Omenihu, U. C. (2023). Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA). Sustainable Chemistry for the Environment, 4, 100050. doi:https://doi.org/10.1016/j.scenv.2023.100050
Wang, E., Ma, X., Tang, S., Yan, R., Wang, Y., Riley, W. W., & Reaney, M. J. (2014). Synthesis and oxidative stability of trimethylolpropane fatty acid triester as a biolubricant base oil from waste cooking oil. Biomass and Bioenergy, 66, 371-378. doi:https://doi.org/10.1016/j.biombioe.2014.03.022
Yeşilyurt, M. K., Öner, İ. V., & Yilmaz, E. C. (2019). Biodiesel induced corrosion and degradation. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 60-70.
Zahra, F. A., Aliyah, B., & Nurhadi, L. O. (2019). Ekstrak Kafein Ampas Kopi Sebagai Inhibitor Korosi Baja Murni Dalam Media H2SO4. Prosiding Semnastek.
Zaid, M., Singh, Y., Kumar, A., & Gupta, S. (2020). Development of the Calophyllum inophyllum based biolubricant and their tribological analysis at different conditions. Materials Today: Proceedings, 26, 2582-2585. doi:https://doi.org/10.1016/j.matpr.2020.02.546
Raja, A.S., Arasu, A.V., & Sornakumar, T. (2015). Effect Of Gasoline-Ethanol Blends On Performance And Emission Characteristics Of A Single Cylinder Air Cooled Motor Bike Si Engine. Journal of Engineering Science and Technology 10, 3.
Sebayang, A. H., Hassan, M. H. Ong, H. C., Dharma, S., Bahar, A. H., Silitonga, A. S., & Kusumo, F. (2017). Enzymatic hydrolysis using ultrasound for bioethanol production from durian (Durio zibethinus) seeds as potential biofuel. Chemical Engineering Transactions, 56, 553–558.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Angga Bahri Pratama, Siti Maretia Benu, Eka Putra Dairi Boangmanalu, Sihar Siahaan, Husin Ibrahim

This work is licensed under a Creative Commons Attribution 4.0 International License.