SIMULASI DISTRIBUSI TEMPERATUR EQUIVALENT VON MISSES DAN HEAT FLUX PADA PINLESS FRICTION WELDING

Authors

  • Pradhana Kurniawan Program Studi Teknik Mesin, Jurusan Teknik Mesin, Universitas Merdeka Malang, Jalan Terusan Dieng No. 62-64 Klojen, Pisang Candi, Malang, Jawa Timur 65146, Indonesia
  • Agus Iswantoko Program Studi Teknik Mesin, Jurusan Teknik Mesin, Universitas Merdeka Malang, Jalan Terusan Dieng No. 62-64 Klojen, Pisang Candi, Malang, Jawa Timur 65146, Indonesia
  • Febrian Dakriso Pa Lado Program Studi Teknik Mesin, Jurusan Teknik Mesin, Universitas Merdeka Malang, Jalan Terusan Dieng No. 62-64 Klojen, Pisang Candi, Malang, Jawa Timur 65146, Indonesia
  • Hariyanto Dwi Prasetyo Program Studi Teknik Mesin, Jurusan Teknik Mesin, Universitas Merdeka Malang, Jalan Terusan Dieng No. 62-64 Klojen, Pisang Candi, Malang, Jawa Timur 65146, Indonesia

DOI:

https://doi.org/10.51510/sinergipolmed.v5i1.1544

Keywords:

Temperature, Friction Stir Welding, Heat Flux

Abstract

Metode mengilangkan pin pada friction stir welding dapat menimalisir terjanya cacat las. Penelitian ini bertujuan untuk menganalisis simulasi distribusi temperatur dan Heat Flux pada friction stir welding dengan material Ti-6AL-4V.  Proses simulasi terdiri dari preprocessing, processing dan post processing. Preprocessing diawali dengan desain sambungan plat Ti-6Al-4V dan geometri pahat menggunakan space claim pada software ANSYS. Plat memiliki dimensi 76,20 mm x 31,75 mm dan tool memiliki diameter 15, 24 mm. Proses selanjutnya adalah input engineering data dimana material yang digunakan adalah TI-6Al-4V dan untuk pahat adalah AISI H13. Meshing menggunakan metode multizone pada pahat dan pada benda kerja menggunakan metode sweep dengan number of divisons 44. Boundary condition terdiri dari displacement, remote displacement, plastic heating dan convection. Displacement digunakan dalam menentukan posisi tumpuan dari benda kerja sedangkan remote displacement digunakan pada arah putaran pahat. Putaran pahat menggunakan 300 rpm. Hasil simulasi teperatur menunjukan bahwa temperature global mengalami kenaikan dari 25°C ke 1052°C. Kenaikan ini diikuti dengan penambahan waktu pengelasan. Temperatur minimum yang dihasilkan adalah 19,8°C pada range waktu 1 – 2 second. Heat flux yang dihasilkan sebesar 3,8 W/mm2. Kenaikan temperature disebabkan adanya gesekan antara tool dan benda kerja, selain itu juga adanya regangan plastis.Temperatur yang naik menyebabkan pelunakan material sehinggal nilai stress akan semakin turun.

References

Attah, B., Lawal, S., Akinlabi, E., & Bala, K. (2021). Evaluation of mechanical properties of dissimilar aluminium alloys during friction stir welding using tapered tool. Cogent Engineering, 8, 1909520.

Badarinarayan, H., Yang, Q., & Zhu, S. (2009). Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy. International Journal of Machine Tools and Manufacture, 49(2), 142–148.

Bakavos, D., Chen, Y., Babout, L., & Prangnell, P. (2011). Material Interactions in a Novel Pinless Tool Approach to Friction Stir Spot Welding Thin Aluminum Sheet. Metallurgical and Materials Transactions A, 42(5), 1266–1282.

Baruah, A., Murugesan, J., & Borkar, H. (2022). Numerical Simulation of Friction Stir Spot Welding of Aluminium-6061 and Magnesium AZ-31B. Materials Science Forum, 1048, 241–253.

Begum, S., Chen, D., Xu, S., & Luo, A. (2009). Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing - MATER SCI ENG A-STRUCT MATER, 517, 334–343.

Chao, Y., Qi, X., & Tang, W. (2003). Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies. Journal of Manufacturing Science and Engineering-transactions of The Asme - J MANUF SCI ENG, 125.

Froes, F. H. (2001). Titanium Alloys: Properties and Applications. Dalam K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Ed.), Encyclopedia of Materials: Science and Technology (hlm. 9367–9369). Elsevier.

Fujimoto, M., Inuzuka, M., Koga, S., & Seta, Y. (2005). Development of Friction Spot Joining. Welding in the World, 49(3), 18–21.

Gabriel J. DeSalvo & John A. Swanson. (1985). ANSYS Engineering Analysis System User’s Manual. Swanson Analysis Systems.

Gaddam, R., Sefer, B., Pederson, R., & Antti, M.-L. (2013). Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. IOP Conference Series: Materials Science and Engineering, 48, 012002.

Gangwar, K., & Ramulu, M. (2017). Friction stir welding of titanium alloys: A review. Materials & Design, 141.

Nyamekye, P., Rahimpour Golroudbary, S., Piili, H., Luukka, P., & Kraslawski, A. (2023). Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries. Advances in Industrial and Manufacturing Engineering, 6, 100112.

Park, H. (t.t.). Pinless Friction Stir Spot Welding of Ti-6Al-4V Alloy for Aerospace Application. Doctoral Dissertations University of Tennessee.

Pasang, T., Budiman, A. S., Wang, J. C., Jiang, C. P., Boyer, R., Williams, J., & Misiolek, W. Z. (2023). Additive manufacturing of titanium alloys – Enabling re-manufacturing of aerospace and biomedical components. Microelectronic Engineering, 270, 111935.

Pradhana, Andoko, A., & Sunu, P. W. (2021). Leaf spring type simulation with finite element method approach. IOP Conference Series: Materials Science and Engineering, 1034(1), 012015.

Prangnell, P., Haddadi, F., & Chen, Y. (2011). Ultrasonic spot welding of aluminium to steel for automotive applications—Microstructure and optimisation. Materials Science and Technology, 27, 617–624.

Salloomi, K. N., Hussein, F. I., & Al-Sumaidae, S. N. M. (2020). Temperature and Stress Evaluation during Three Different Phases of Friction Stir Welding of AA 7075-T651 Alloy. Modelling and Simulation in Engineering, 2020, e3197813.

Shobri, N. N. S. M., Pedapati, S. R., & Awang, M. (2021). Simulation of Friction Stir Spot Welding of Copper and Aluminium During Plunging Phase. Journal of Physics: Conference Series, 2129(1), 012002.

Thomas, W., Dolby, R. E., & Twi. (2002). Friction Stir Welding Developments. Dalam ASM Proceedings of the International Conference: Trends in Welding Research.

Veljic, D., Rakin, M., Perović, M., Medjo, B., Radakovic, Z., Todorovic, P., & Pavišić, M. (2013). Heat generation during plunge stage in friction stir welding. Thermal Science, 17, 489–496.

Zhang, Z., Yang, X., Zhang, J., Zhou, G., Xu, X., & Zou, B. (2011). Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Materials & Design, 32(8), 4461–4470.

Zhu, X. K., & Chao, Y. J. (2004). Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Materials Processing Technology, 146(2), 263–272.

Downloads

Published

2024-03-02