SIFAT DAN KARAKTERISASI BIODIESEL DARI MINYAK GORENG BEKAS MELALUI PROSES ESTERIFIKASI-TRANSESTERIFIKASI MENGGUNAKAN PEMANAS UDARA

Authors

  • Surya Dharma Program Studi Teknik Mesin, Jurusan Teknik Mesin, Politeknik Negeri Medan, Jl. Almamater No.1, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara 2015, Indonesia
  • Rahmawaty Program Studi Teknologi Rekayasa Energi Terbarukan, Jurusan Teknik Mesin, Politeknik Negeri Medan, Jl. Almamater No.1, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara 2015, Indonesia
  • Rihat Sebayang Program Studi Teknologi Rekayasa Energi Terbarukan, Jurusan Teknik Mesin, Politeknik Negeri Medan, Jl. Almamater No.1, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara 2015, Indonesia

DOI:

https://doi.org/10.51510/sinergipolmed.v5i1.1508

Keywords:

Biodiesel, minyak goreng bekas, esterifikasi, transesterifikasi, pemanas udara

Abstract

Kebutuhan akan energi mengalami peningkatan setiap tahun karena meningkatnya populasi, kenaikan harga minyak, berkurangnya cadangan sumber daya bahan bakar fosil, dan adanya upaya pemerintah untuk mengurangi pencemaran udara dengan penggunaan energi terbarukan. Tujuan dari penelitian adalah menghasilkan bahan bakar biodiesel yang dihasilkan dari proses transesterifikasi yang memanfaatkan pemanas yang berasal dari udara yang dipanaskan. Bahan baku dalam penelitian ini bersumber dari bahan yang tidak terpakai yaitu minyak goreng bekas (waste cooking oil). Hasil penelitian menunjukkan bahwa pada proses produksi biodiesel, katalis 1% memiliki hasil biodiesel yang lebih besar yaitu sebesar 98,3%. Dan methyl ester yang dihasilkan memiliki sifat dan karakterisasi bahan bakar yang sesuai dengan standard ASTM D6751 dan EN14214.

Author Biography

Rihat Sebayang, Program Studi Teknologi Rekayasa Energi Terbarukan, Jurusan Teknik Mesin, Politeknik Negeri Medan, Jl. Almamater No.1, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara 2015, Indonesia

-

References

Campanelli, P., Banchero, M., & Manna, L. (2010). Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel, 89(12), 3675-3682.

Chinh Nguyen, H., Hagos Aregawi, B., Fu, C.-C., Chyuan Ong, H., Barrow, C. J., Su, C.-H., Wang, F.-M. (2023). Biodiesel production through electrolysis in the presence of choline chloride-based deep eutectic solvent: Optimization by response surface methodology. Journal of Molecular Liquids, 121633.

Dharma, S., Ong, H. C., Masjuki, H. H., Sebayang, A. H., & Silitonga, A. S. (2016). An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines. Energy Conversion and Management, 128, 66-81.

Ghisi, M., Chaves, E. S., Quadros, D. P., Marques, E. P., Curtius, A. J., & Marques, A. L. (2011). Simple method for the determination of Cu and Fe by electrothermal atomic absorption spectrometry in biodiesel treated with tetramethylammonium hydroxide. Microchemical Journal, 98(1), 62-65.

Hassan, T., Rahman, M. M., Rahman, M. A., & Nabi, M. N. (2022). Opportunities and challenges for the application of biodiesel as automotive fuel in the 21st century. Biofuels, Bioproducts and Biorefining, 16(5), 1353-1387.

Lin, Y.-C., Hsu, K.-H., & Chen, C.-B. (2011). Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends. Energy, 36(1), 241-248.

Milano, J., Ong, H. C., Masjuki, H. H., Silitonga, A. S., Chen, W.-H., Kusumo, F., Sebayang, A. H. (2018). Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management, 158, 400-415.

Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J., & Bordado, J. C. (2019). Biodiesel production processes and sustainable raw materials. Energies, 12(23), 4408.

Son, E. K., & Yeom, S. H. (2021). Repeated Biodiesel Production Using a Cartridge Containing Solid Catalysts Manufactured from Waste Scallop Shells for Simultaneous Lipid Extraction and Transesterification Process. Biotechnology and Bioprocess Engineering, 26(1), 145-155.

Stavarache, C., Vinatoru, M., & Maeda, Y. (2007). Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrasonics Sonochemistry, 14(3), 380-386.

Stavarache, C., Vinatoru, M., Maeda, Y., & Bandow, H. (2007). Ultrasonically driven continuous process for vegetable oil transesterification. Ultrasonics Sonochemistry, 14(4), 413-417.

Teixeira, L. S. G., Assis, J. C. R., Mendonça, D. R., Santos, I. T. V., Guimarães, P. R. B., Pontes, L. A. M., & Teixeira, J. S. R. (2009). Comparison between conventional and ultrasonic preparation of beef tallow biodiesel. Fuel Processing Technology, 90(9), 1164-1166.

Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., & Lin, L. (2019). Catalysis in biodiesel production—a review. Clean Energy, 3(1), 2-23.

Downloads

Published

2024-03-02