PENGARUH VARIASI JUMLAH BLADE TERHADAP PERFORMA HORIZONTAL AXIS WIND TURBINE MENGGUNAKAN QBLADE
DOI:
https://doi.org/10.51510/sinergipolmed.v5i1.1492Keywords:
HAWT, Jumlah Bilah, Koefisien Performa, Tenaga MekanikAbstract
Perubahan iklim mendorong kita untuk dapat melakukan transisi dari energi konvesional ke energi baru terbarukan (EBT). Energi angin merupakan salah satu dari sekian banyak jenis energi terbarukan yang dapat dimanfaatkan menggunakan wind turbine. Wind Turbine diklasifikasikan menjadi Horizontal Axis Wind Turbine (HAWT) dan Vertical Axis Wind Turbine (VAWT). Penelitian ini bertujuan untuk mengetahui performa Horizontal Axis Wind Turbine (HAWT) terhadap variasi jumlah bilah 3, 5 dan 7. Pemodelan dan analisis menggunakan Q-Blade untuk memperoleh parameter perfoma seperti Coefficient of Performance (Cp), Daya mekanik, dan Torsi. Desain bilah HAWT menggunakan airfoil tipe NACA4412 dan panjang 1.2 m pada kecepatan angin 10 m/s dan TSR 7. Hasil Penelitian menunjukkan bahwa performa terbaik pada TSR 7 adalah HAWT dengan jumlah 3 bilah dengan Cp, torsi, dan daya mekanik tertinggi secara berurutan yaitu 0,46; 21,89 Nm; 1,28 kW.
References
Abdelgalil Eltayesh, F. C.-B. (2021). Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine. Alexandria Engineering Journal.
Fattal, T. (2018). Increasing Wind Turbine Efficiency. International Journal of Technology and Engineering Studies.
Fonseca, L., & Carvalho., M. (2022). Greenhouse gas and energy payback times for a wind turbine installed in the Brazilian Northeast. Frontiers in Sustainability.
Geofisika, B. M. (2020). Kecepatan Angin Maksimum, Minimum dan Rata-Rata Menurut Bulan. Badan Pusat Statistik.
Ghanem, S., Fandi, G., Kyncl, J., & Müller, Z. (2022). A novel scheme for control by active and reactive power utilized in gearless variable speed wind turbine system with PMSG connected to the grid. Electrical Engineering & Electromechanics.
Hesty, N. W. (2022). Estimasi Potensi Energi Angin Indonesia Menggunakan Model Weather Research and Forecast - Four Dimension Data Assimilation (WRF-FDDA). Jurnal Sains Dirgantara.
Hongfu Zhang, J. W. (2022). Effects of blade number on the aerodynamic performance and wake characteristics of a small horizontal-axis wind turbine. Energy Conversion and Management.
Jiahao Wen, L. Z. (2023). Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine. Energy.
Pandey, D., & Singh, S. (2020). Introduction and Controlling of Wind Turbine in Wind Energy Conversion System. Computer Science, Engineering.
Sarjito. (2018). Studi Karakteristik Airfoil NACA 2410 dan NACA 0012 Pada Berbagai Variasi Angle of Attack. Media Mesin, 11(ISSN 1411-4348), 15-22.
Siahaya, A., Setiati, R., & Malinda, M. (2021). The Opportunities and Constraints of Wind Energy. IOP Conference Series: Earth and Environmental Science.
Wijaya, F., Hindarto, A., & Tiyono. (2017). The development of wind energy resources as wind turbine grid tied using SCIG in Bantul South Java Island. 9th International Conference on Information Technology and Electrical Engineering (ICITEE).
Zahrah, I. (2014). Dasar-dasar perancangan Bilah, Bahan Materi Pembelajaran. Indonesia: PT. Lentera Angin Nusantara.
Zhang, D.-H., Ding, L., Huang, B., Chen, X.-M., & Liu, J.-T. (2019). Optimization Study on the Blade Profiles of A Horizontal Axis Tidal Turbine Based on BEM-CFD Model. China Ocean Engineering, 33(4), 436–445.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Syaukani
This work is licensed under a Creative Commons Attribution 4.0 International License.