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Highlights  

• This review explores recent computational methods for enhancing enzyme thermostability for industrial 
applications. 

• Structure-based design and machine learning are key approaches, each with unique strengths and 
limitations. 

• Hybrid models integrating these techniques show improved predictive accuracy and enzyme performance. 

• A comparison of leading software tools is provided to guide method selection based on research goals. 
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A B S T R A C T 

Enzymes play a vital role as biocatalysts in various industrial 
applications due to their high specificity and efficiency under 
mild conditions. However, their limited thermostability 
significantly constrains their operational lifespan and 
effectiveness at elevated temperatures. This review examines 
recent advancements in computational methods aimed at 
enhancing enzyme thermostability, focusing on structure-based 
rational design, machine learning, and hybrid approaches. Key 
findings highlight the effectiveness of structure-based methods, 
in optimizing enzyme structures, while machine learning 
approaches demonstrated potential in predicting stabilizing 
mutations. This review identifies key research gaps and proposes 
directions for future studies to facilitate the industrial adoption of 
thermostable enzymes. 
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1. Introduction  

Enzymes are key biocatalysts in industry because of their high specificity as well 

as efficiency [1]. However, their use in practice is frequently restricted. This is because 

they lack sufficient thermal stability, which makes the enzyme not effective enough 

when temperatures are elevated [2]. Improving upon the thermal stability for enzymes, 

without any sacrifice of their catalytic efficiency, has therefore become a focus inside 

enzyme engineering. 

Current improvements in advanced computing methods present truly hopeful 

answers to these specific difficulties. To predict and add mutations that make enzymes 

more thermally stable, was created structure-based rational design, machine learning, 

and hybrid methods [3]. 

The purpose of this review is to carefully review the current computational 

strategies, and to further assess their effectiveness, for improvements regarding the 

thermal stability of enzymes. A thorough review of nearly all of these approaches should 

offer some guidance on the directions in which further studies can go in order to help 

thermostable enzymes find use inside of industry. 

2.  Methods  

This literature review illustrated the potential role that computers could play in 

improving the industrial stability of enzymes. The review reviewed journal articles 

published between 2015 on-wards for the reason that those articles are considered the 

latest breakthrough in developing computational tools and methods. Some journals in 

2005 was also included due to its foundational contributions to structure-based rational 

design. 

The study evaluated the literature focused on computer tools, namely, Rosetta, 

GROMACS, PyMOL, TensorFlow, Scikit-learn. Review papers and works that relied 

only on laboratory studies were not included. Terms such as "thermostable enzymes 

computational design" and "machine learning for stability in enzyme" were used to carry 

out the search. 

Searches using database sites, such as ScienceDirect, Springer, Wiley Online 

Library, and IEEE Xplore, were carried out to retrieve the articles. The search was able 

to cover a wide range of computer techniques, which were all practically applied in 

industries. 

Thus, it was possible to analyze the collected data through computational methods  

and main findings derived from the research gaps studies. A particular emphasis was 

therefore placed on studies that employed various computer techniques since this 

method is very significant in industrial applicances. 
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This method also allowed a comprehensive overview of current advancements 

and challenges in computational enzyme design, as it balanced the views on existing 

methods' potential and limitations. 

3. Results and Discussion  

There has been significant progress in computational methods to improve enzyme 

thermostability, especially through the use of structure-based rational design, machine 

learning, and hybrid approaches. Each method has its own specificities as outlined in 

Table 1. 

Table 1 Review 

Title 
Authors and 
Year 

Research 
Topic 

Method/ 
Software 

Key Findings 
Research 
Gaps 

Computational 
Thermostabilizat
ion of an 
Enzyme 

Korkegian et 
al. (2005) [4] 

Enhancing 
enzyme 
thermostabil
ity 

Rosetta 
(structure-
based 
design) 

Successfully 
improved 
enzyme 
thermostabili
ty through 
structural 
modification
s. 

Limited 
exploration 
of machine 
learning 
approaches. 

Protein 
Thermostability 
Engineering 

Modarres et 
al., (2016) [5] 

Principles of 
protein 
engineering 
for 
thermostabil
ity 

PyMOL, 
FoldX 
(rational 
design and 
directed 
evolution) 

Identified 
key factors 
influencing 
protein 
thermostabili
ty. 

Lack of 
integration 
between 
computation
al and 
experimental 
approaches. 

Thermostability 
Engineering of 
Industrial 
Enzymes 
through 
Structure-Based 
Rational Design 
 

Nezhad et 
al. (2022) [6] 

Rational 
design for 
industrial 
enzyme 
thermostabil
ity 

Rosetta, 
GROMACS 
(structure-
based 
rational 
design) 

Enhanced 
stability 
without 
compromisin
g catalytic 
efficiency. 

Limited 
exploration 
of data-
driven 
methods. 
 

Data-Driven 
Strategies for the 
Computational 
Design of 
Enzyme 
Thermal 
Stability 
 
 

Dou et al. 
(2023) [7] 

Data-driven 
approaches 
for enzyme 
design 

Scikit-learn, 
TensorFlow 
(machine 
learning and 
data mining) 

Demonstrate
d 
effectiveness 
of data-
driven 
strategies in 
predicting 
stability. 

Need for 
hybrid 
approaches 
combining 
data-driven 
and rational 
design. 

Rational-Design 
Engineering to 
Improve 
Enzyme 
Thermostability 

Pongsupasa 
et al., (2023) 
[8] 

Improving 
enzyme 
stability 
through 

PyRosetta, 
GROMACS 
(site-
directed 
mutagenesis 

Achieved 
enhanced 
stability by 
modifying 
specific 

Insufficient 
analysis of 
long-term 
stability in 
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Title 
Authors and 
Year 

Research 
Topic 

Method/ 
Software 

Key Findings 
Research 
Gaps 

rational 
design 

and 
molecular 
dynamics 
simulations) 

amino acid 
sites. 

industrial 
conditions. 

Achieving 
Thermostability 
of a Phytase with 
Resistance up to 
100 °C 

Tu et al. 
(2024) [9] 

Enhancing 
phytase 
stability 

Schrödinger 
Suite, 
NAMD 
(directed 
evolution 
and rational 
design) 

Successfully 
stabilized 
phytase at 
high 
temperatures
. 

Limited 
application 
to other 
types of 
enzymes. 

Computational 
Advances in 
Protein 
Engineering and 
Enzyme Design 

Derat & 
Kamerlin. 
(2022) [10] 

Computatio
nal methods 
in enzyme 
engineering 

AlphaFold, 
PyMOL, 
MODELLE
R (AI-based 
tools and 
molecular 
simulations) 

Showcased 
the role of AI 
in 
accelerating 
enzyme 
design. 

Insufficient 
focus on cost-
effectiveness 
for industrial 
applications. 

Current 
Advances in 
Design and 
Engineering 
Strategies of 
Industrial 
Enzymes 

Dinmukham
ed et al. 
(2021) [11] 

Strategies 
for 
industrial 
enzyme 
design 

Rosetta, 
Scikit-learn 
(hybrid 
approaches: 
rational 
design + 
machine 
learning) 

Highlighted 
benefits of 
combining 
multiple 
approaches. 

Lack of 
detailed 
analysis on 
implementati
on 
challenges. 

Computational 
design of an 
efficient and 
thermostable 
esterase for 
polylactic acid 
depolymerizatio
n 

Xie et al. 
(2024) [12] 

Enzyme 
design for 
plastic 
degradation 

Rosetta, 
GROMACS
, AutoDock 
(computatio
nal protein 
design and 
molecular 
dynamics) 

Enhanced 
degradation 
efficiency 
and stability 
of esterase. 

Limited 
scalability 
studies for 
industrial 
applications. 

A general 
Temperature-
Guided 
Language model 
to engineer 
enhanced 
Stability and 
Activity in 
Proteins 

Jiang et al., 
(2024) [13] 

AI-based 
models for 
protein 
engineering 

PyTorch, 
Transforme
rs Library 
(temperatur
e-guided 
language 
models) 

Improved 
both stability 
and activity 
of proteins 
using AI. 

Lack of 
comparative 
studies with 
traditional 
methods. 

 

Information on studies regarding computational methods for improving enzyme 

thermostability is furthersummarized in Table 1. It contains the title, names of authors, 

date of publication, methodology or software used, important findings, and identified 

research gaps. The outcome suggests that hybrid strategies combining structure-based 
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design and machine learning would counterbalance the limitations of independent 

approaches and would be a strong strategy to improve enzyme thermostability. 

With vivid differences with respect to efficacy and feasibility, almost all the 

reviewed studies in Table 1 have successfully conducted enzyme thermal 

stabilization.For example, in a work done by Tu et al. [9], extraordinary enhancement of 

phytase stability was reported at 100 °C, using an approach involving a combination of 

Schrödinger Suite with NAMD. However, the limitations of this method apply to a few 

groups of enzymes, whereas others have never been validated in industry yet. 

Furthermore, Derat & Kamerlin [10]  recount the importance of AI in fast-tracking 

enzyme design with software such as AlphaFold and PyMOL. Their results show AI 

much fast-forwards enzyme structure prediction and fruitful alterations. 

 Different studies show that indeed almost all the computational techniques are 

successfully applied to enhance enzyme thermostability, but those differ on their 

efficiency, scalability, and applicability in industry. For instance, Tu et al. [9] reported 

outstanding enhanced stability of phytase using Schrödinger Suite and NAMD, which 

supports the promise of combining advanced force fields with high parallelization for 

enzyme design. However, such approaches would be questionable when considering 

their industrial applications due to high computation costs and the need for extensive 

experimental verifications. 

Similarly, the application of AI software including AlphaFold has taken to task the 

reliability of predictions in protein structure as stated by Derat & Kamerlin [10]. 

Nevertheless, the major drawback remains high computational expenses along with 

hardly any attention to cost-effectiveness, making these processes untenable for 

industrial application. Solving such problems implies further resource-poor AI models 

and integrating cost evaluation frameworks into computational protocols. 

3. 1 New Methods to Enhance Enzyme Heat Stability 

Software such as Rosetta and GROMACS are very useful in sharpening enzyme 

temperature forays with specific techniques. They assist in the design of enzyme 

structures by proposing alterations that stabilize the molecule, such as enhancing 

hydrogen bonds and salt bridges. In 2005, Korkegian et al. [4] showed that Rosetta could 

be used to modify three specific sections of an enzyme, this is also supported by [14] 

which also uses Rosetta to enzyme design and activity enhancement so that it makes 

enzyme was more stable and efficient when heated. 

Machine learning is also playing an important role in making enzymes more 

temperature-resistant. Though less widely adopted to date, it has immense potential. 

Machine learning algorithms can also help researchers predict the chemical changes that 

make enzymes more stable. TensorFlow and Scikit-learn also assist with creating models 

that efficiently process complex data with picking up relations between system changes 

in the enzyme sequence and stability. In 2023, Dou et al. [7] successfully showed that 
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these models are capable of predicting enzyme stability with few experiments. The 

trouble is, these models can be difficult to interpret, particularly in understanding how 

the changes improve the stability of enzymes. Explainable AI models can be useful in 

this case since they are transparent when they point out why specific changes act in the 

intended way. 

3. 2 Alternatives Sofware and Their Roles 

Part of running successful computational research is the decision on what 

software to use. Table 2 presents a comparison of key software alternatives for molecular 

dynamics simulations, machine learning, protein structure modeling, molecular 

visualization, and protein programming, emphasizing their unique strengths and 

suitable contexts for application. 

Table 2. Software Alternatives for Designing Thermostable, Efficient, and Cost-
Effective Enzymes 

Category 
Software & 
Alternatives 

Detailed Explanation 

Molecular 
Dynamics 
Simulation 

GROMACS ↔ 
NAMD ↔ 
AMBER 

GROMACS excels in speed and is open-source, suitable for 
small to medium-scale simulations; NAMD is superior for 
large-scale simulations due to high parallelization; 
AMBER offers higher accuracy for complex proteins [15]. 

Machine 
Learning 
(ML) 

Scikit-learn ↔ 
TensorFlow ↔ 
PyTorch ↔ Weka 

Scikit-learn is ideal for traditional models (regression, 
SVM) with simple syntax; TensorFlow is strong for large-
scale production with TPU support; PyTorch is flexible for 
research; Weka provides a GUI for non-coding analysis 
[16]. 

Protein 
Structure 
Modeling 

MODELLER ↔ 
Rosetta ↔ 
AlphaFold ↔ 
AutoDock Vina 

MODELLER focuses on homology modeling with 
templates, Rosetta supports de novo modeling and protein 
design, AlphaFold achieves the highest accuracy in 
structure prediction, and AutoDock Vina specializes in 
small-molecule docking [17] 

Molecular 
Visualization 

PyMOL ↔ VMD PyMOL is preferred for high-quality publication images 
with detailed display control; VMD is tailored for 
analyzing molecular dynamics data with robust scripting 
capabilities. 

Protein 
Programmin
g 

PyRosetta ↔ 
Rosetta 

Rosetta offers diverse protocols for protein design and 
prediction, whereas PyRosetta allows for Python scripting 
to automate complex tasks with greater flexibility. 

Protein 
Design 

MODELLER ↔ 
Swiss-Model 

MODELLER provides more comprehensive features for 
homology modeling with better parameter control, while 
Swiss-Model is more user-friendly for beginners seeking 
quick results without complex configurations. 

Table 2 summarizes several software tools that are used for activities such as 

molecular dynamics simulations, machine learning, protein structure prediction, 

molecular visualization, and protein design. When selecting which software is best, it is 

important to consider the research requirements, i.e., accuracy, scalability, and 

computation costs. In some cases, merging and aligning different software tools will 

enhance the computation performance [18]. 
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This side-by-side comparison illustrates the advantage of selecting your software 

according to the particular demands of your research environment. To illustrate, when 

choosing between NAMD and GROMACS for molecular dynamics computation, you 

would need to consider the size as well as the complexity of the system that is under 

study. GROMACS would most suitably be applicable to small systems, while NAMD is 

ideally suited for large systems due to its scalability architecture [19]. 

3. 3 Synergistic Potential of Hybrid Approaches 

Hybrid approaches, where structure-based design and machine learning are 

combined, have been suggested as a remedy to surpass the drawback of using one 

approach in silico. A recent study by Dinmukhamed et al. [11] showed that hybrid 

models, where structural information is utilized for training machine learning models, 

performed significantly better than single approaches for predicting stabilizing 

mutations. This fusion brings together the predictiveness of machine learning and the 

structural precision of structure-based methods to enable possibilities of mutations to be 

explored even further. Using the incorporation of Rosetta's structural modeling into 

TensorFlow's machine learning framework as an example, this hybrid approach resulted 

in the creation of enzymes that not only performed better but even proved more stable 

in character, actually bridging the accuracy-scalability gap. 

3. 4 Effectiveness and Limitations of Methods 

All these computational approaches discussed here have both strengths and 

weaknesses. Structure-based design is excellent at giving very high-level control over 

structural modification but is very time-consuming and typically limited to small 

enzyme sizes [5]. Machine learning, on the other hand, while able to process big data 

very effectively, is not very transparent and requires a lot of training data [12]. 

The combination of rational design and machine learning offers a possible solution 

to such complexities. For example, Dinmukhamed et al. [11] established that the 

combination of these approaches not only enhanced the stability of enzymes but also 

accelerated the designing process and ensured more accurate results. In this method, 

structure simulation data are employed to train machine learning models, which then 

aid in designing improved mutation designs. 

3. 5 Cost-Effectiveness of Computational and Hybrid Methods in Enzyme 

Design 

In comparison to traditional experimental approaches, computer-aided and 

hybrid designs reduce the costs by incurring lower trial-and-error testing and cheaper 

reagent, equipment, and labor inputs [20]. Computer programming environments like 

Rosetta, GROMACS, TensorFlow, and Scikit-learn offer predictive accuracy through 

which scientists filter and rank more viable enzyme mutations to minimize expensive 

experimental testing. The computer assistances accelerate enzyme design workflow in 

terms of shorter development timelines and fewer overall expenses [21]. 
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Also, these computational approaches can reduce failure rates through intentional 

design and predictive computation, which equate to fewer failed experiments and their 

costs. Their scalability, enabled by software and cloud computing, enable one to handle 

large volumes of data without spending much more money, which makes them suitable 

for industrial use. While the initial investment in computing hardware may be high, the 

long-term return on investment includes reduced dependence on trial-and-error 

approaches, compressed time-to-market for thermostable enzymes, and increased return 

on investment (ROI). 

4. Conclusion 

The review highlights the way computational approaches have compressed the 

design process for thermostable enzymes, through the combination of machine learning 

and structure-based rational design. The construction of hybrid strategies that blend 

these methods provides a promising route for enhancing enzyme stability without loss 

of catalytic function. Yet, there are a number of fundamental issues to be addressed, such 

as scalability, cost, and the need for thorough experimental validation of computational 

design predictions. These issues will be addressed through concerted research efforts, 

the establishment of standard experimental protocols, and calibration of calculation 

devices for wider industrial application. Further emphasis must be placed on the 

integration of data-driven methods and experimental back-loops to iteratively refine the 

design process and also to establish the practical viability of thermostable enzymes. 

Having overcome systematically these challenges, we can now employ the full power of 

computational tools to revolutionize enzyme engineering in industry. 

Acknowledgements 
The authors would like to express their sincere gratitude to the Industrial Chemical 

Engineering Technology program, Department of Mechanical Engineering, Politeknik 

Negeri Medan, for providing access to literature resources and continuous academic 

support throughout the preparation of this review. The authors also appreciate the 

valuable feedback from colleagues, which contributed to improving the clarity and 

depth of this manuscript. 

CRediT Authorship Contribution Statement 
Prisca Caesa Moneteringtyas: Conceptualization, Supervision, Writing – review & 

editing, Project administration. Nahzim Rahmat: Investigation, Formal analysis, 

Visualization. Inten Pangestika: Methodology, Writing – original draft, Data curation, 

Sri Rahayu Widya Ningrum: Software, Literature search, Annisa Fillaeli: Resources, 

Validation, Writing – review & editing. Aliyah Aliyah:Writing – review & editing, 

translating. 

Conflicts of Interest 
The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 



 
 
Moneteringtyas et al.               Sustainable in Energy and Science Technology (2025) 47–56 
 

55 
 

https://ojs.polmed.ac.id/index.php/SiEST 

References 

[1] Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: Current 
status and future aspects. Bioechnol Adv 2015;33(7):1443-1454.  
https://doi.org/10.1016/j.biotechadv.2015.02.014  

[2] Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, et al. 
Thermal stability enhancement: Fundamental concepts of protein engineering 
strategies to manipulate the flexible structure. Int J Biol Macromol 2022;214:642–
654. https://doi.org/10.1016/j.ijbiomac.2022.06.154  

[3] Zheng N, Cai Y, Zhang Z, Zhou H, Deng Y, Du S, et al. Tailoring industrial 
enzymes for thermostability and activity evolution by the machine learning-based 
iCASE strategy. Nat Commun 2025;16:604. https://doi.org/10.1038/s41467-025-
55944-5  

[4] Korkegian A, Black ME, Baker D, Stoddard BL. Computational 
Thermostabilization of an Enzyme. Science (1979) 2005;308:857–860. 
https://doi.org/10.1126/science.1107387  

[5] Modarres HP, Mofrad MR, Sanati-Nezhad A. Protein thermostability engineering. 
RSC Adv 2016;6(116):115252–115270. https://doi.org/10.1039/C6RA16992A 

[6] Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. 
Thermostability engineering of industrial enzymes through structure 
modification. Appl Microbiol Biotechnol 2022;106:4845–4866. 
https://doi.org/10.1007/s00253-022-12067-x  

[7] Dou Z, Sun Y, Jiang X, Wu X, Li Y, Gong B, et al. Data-driven strategies for the 
computational design of enzyme thermal stability: trends, perspectives, and 
prospects. Acta Biochim Biophys Sin (Shanghai) 2023;55:343–355. 
https://doi.org/10.3724/abbs.2023033  

[8] Pongsupasa V, Anuwan P, Maenpuen S, Wongnate T. Rational-Design 
Engineering to Improve Enzyme Thermostability. In: Magnani F, Marabelli C, 
Paradisi F, editors. Enzyme Engineering: Methods and Protocols, New York, NY: 
Springer US; 2022, p. 159–178. https://doi.org/10.1007/978-1-0716-1826-4_9  

[9] Tu T, Wang Q, Dong R, Liu X, Penttinen L, Hakulinen N, et al. Achieving 
thermostability of a phytase with resistance up to 100 oC. Journal of Biological 
Chemistry 2024;300(12). https://doi.org/10.1016/j.jbc.2024.107992  

[10] Derat E, Kamerlin SCL. Computational Advances in Protein Engineering and 
Enzyme Design. J Phys Chem B 2022;126(13):2449–2451. 
 https://doi.org/10.1021/acs.jpcb.2c01198  

[11] Dinmukhamed T, Huang Z, Liu Y, Lv X, Li J, Du G, et al. Current advances in 
design and engineering strategies of industrial enzymes. Systems Microbiology 
and Biomanufacturing 2021;1(1):15–23. https://doi.org/10.1007/s43393-020-
00005-9  

[12] Xie B, Zhang J, Sun H, Bai R, Lu D, Zhu Y, et al. Computational design of an 
efficient and thermostable esterase for polylactic acid depolymerization. Green 
Chemistry 2024;26(12):7268–7279. https://doi.org/10.1039/D3GC04888H  

[13] Jiang F, Li M, Dong J, Yu Y, Sun X, Wu B, et al. A general temperature-guided 
language model to design proteins of enhanced stability and activity. Sci Adv 
2024;10:eadr2641. https://doi.org/10.1126/sciadv.adr2641  

[14] Sun R, Wu D, Chen P, Zheng P. Cutting-edge computational approaches in 
enzyme design and activity enhancement. Biochem Eng J 2024;212:109510. 
https://doi.org/10.1016/j.bej.2024.109510  

https://doi.org/10.1016/j.biotechadv.2015.02.014
https://doi.org/10.1016/j.ijbiomac.2022.06.154
https://doi.org/10.1038/s41467-025-55944-5
https://doi.org/10.1038/s41467-025-55944-5
https://doi.org/10.1126/science.1107387
https://doi.org/10.1039/C6RA16992A
https://doi.org/10.1007/s00253-022-12067-x
https://doi.org/10.3724/abbs.2023033
https://doi.org/10.1007/978-1-0716-1826-4_9
https://doi.org/10.1016/j.jbc.2024.107992
https://doi.org/10.1021/acs.jpcb.2c01198
https://doi.org/10.1007/s43393-020-00005-9
https://doi.org/10.1007/s43393-020-00005-9
https://doi.org/10.1039/D3GC04888H
https://doi.org/10.1126/sciadv.adr2641
https://doi.org/10.1016/j.bej.2024.109510


 
 
Moneteringtyas et al.               Sustainable in Energy and Science Technology (2025) 47–56 

 

56 
 

[15] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel 
RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput 
Chem. 2005 Dec;26(16):1781-1802. https://doi.org/10.1002/jcc.20289   

[16] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system 
for large-scale machine learning 2016.https://doi.org/10.48550/arXiv.1605.08695  

[17] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly 
accurate protein structure prediction with AlphaFold. Nature 2021;596:583–589. 
https://doi.org/10.1038/s41586-021-03819-2  

[18] Krylov A, Windus TL, Barnes T, Marin-Rimoldi E, Nash JA, Pritchard B, et al. 
Perspective: Computational chemistry software and its advancement as illustrated 
through three grand challenge cases for molecular science. J Chem Phys 
2018;149:180901. https://doi.org/10.1063/1.5052551  

[19] A. Poghosyan, A. ARTASHES Shahinyan, A. H. Poghosyan, G. A. Yeghiazaryan, 
H. H. Gharabekyan, and A. A. Shahinyan, “The GROMACS and NAMD Software 
Packages Comparison,” Commun Comput Phys, vol. 1, no. 4, pp. 736–743, Aug. 2006, 
[Online]. Available: http://www.global-sci.com/ 

[20] Landes SJ, McBain SA, Curran GM. An introduction to effectiveness-
implementation hybrid designs. Psychiatry Res 2019;280:112513. 
https://doi.org/10.1016/j.psychres.2019.112513  

[21] Landwehr GM, Bogart JW, Magalhaes C, Hammarlund EG, Karim AS, Jewett MC. 
Accelerated enzyme engineering by machine-learning guided cell-free expression. 
Nat Commun 2025;16:865. https://doi.org/10.1038/s41467-024-55399-0   

 
 
 

 

 

https://doi.org/10.1002/jcc.20289
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1063/1.5052551
http://www.global-sci.com/
https://doi.org/10.1016/j.psychres.2019.112513
https://doi.org/10.1038/s41467-024-55399-0

