ANALISIS PERHITUNGAN PCI GIRDER H-170 CM PADA PROYEK JALAN TOL TEBING TINGGI – PARAPAT RUAS SERBELAWAN – SIANTAR (STA 48+951)

Frans Yoga Panjaitan¹, Aditya Wiradana², Mizanuddin Sitompul³

Teknik Perancangan Jalan dan Jembatan^{1,2,3}, Teknik Sipil, Politeknik Negeri Medan fransyogapanjaitan@students.polmed.ac.id¹, adityawiradana@students.polmed.ac.id², mizanuddinsitompul@polmed.ac.id³

ABSTRAK

Jembatan Bah Kapul, bagian dari jalan tol Tebing Tinggi – Parapat pada STA 48+951, melintasi sungai di Desa Gurilla, Kecamatan Siantar Sitalasari, dengan panjang 107,40 meter dan lebar 25,76 meter. Jembatan ini memiliki 3 bentang yang didukung oleh 2 abutment dan 2 pier, dengan jarak 25,80 m antara Abutment 1 dan Pier 1, serta 40,80 m antara Pier 1 dan Pier 2, dan Pier 2 ke Abutment 2. Struktur utamanya menggunakan PC I Girder beton prategang, dengan bentang 40,80 m memakai PC I Girder H – 170 cm, f'c 60 MPa, dan jarak antar girder 140 cm. Analisis pembebanan dilakukan berdasarkan SNI 1725:2016, Panduan Bidang Jalan dan Jembatan No. 02/M/BM/2021, serta RSNI-T-12-2004. Dibutuhkan 5 tendon dan 92 strand, dengan kehilangan gaya prategang 13,495%. Kapasitas lentur gelagar adalah Mr = 28.715,74 kNm, lebih besar dari persyaratan tulangan minimum 19.077,63 kNm. Kapasitas geser gelagar adalah ϕ v.Vn = 1892,78 kN, lebih besar dari Vucr = 1732,95 kN, dengan tulangan geser D13 – 150 mm. Lendutan total berdasarkan daya layan I adalah 0,0415 m, masih di bawah batas L/800 = 0,051 m.

Kata Kunci: PC I Girder H – 170 cm, SNI 1725: 2016, Lendutan

PENDAHULUAN

Latar Belakang

Jembatan adalah suatu bangunan struktur yang menghubungkan rute atau lintasan transportasi yang terpisah karena sungai, danau, saluran, jalan raya, jalan kereta api dan perlintasan lainnya. Beton prategang adalah beton bertulang yang mengalami tegangan internal dengan besar dan distribusi sedemikian rupa sehingga dapat mengimbangi sampai batas tertentu tegangan yang terjadi akibat beban eksternal. Dalam metode pelaksanaan pengaplikasian beton prategang terdiri dari dua metode yaitu metode *pre-tensioned* dan metode *post-tensioned*. Jembatan Bah Kapul adalah salah satu bagian dari jalan tol Tebing Tinggi – Parapat pada STA 48+951 yang melintasi sungai di Desa Gurilla Kecamatan Siantar Sitalasari dengan bentang sepanjang 107,40 meter dan lebar jembatan ialah 25,76 meter dengan dua jalur. Jembatan ini terdiri dari 3 bentang yang terdiri dari 2 *Abutment* dan 2 *Pier*. Jarak antara *Abutment* 1 dan *Pier* 1 ialah 25,80 m, jarak antara *Pier* 1 dan *Pier* 2 ialah 40,80 m, dan jarak antara *Pier* 2 dan *Abutment* 2 40,8 m dengan struktur utama beton prategang PC I Girder *H-210 cm*. Profil girder yang digunakan ialah berpenampang I dengan penampang yang bagian tengah lebih langsing dari bagian tepi nya.

Pada penelitian ini penulis melakukan analisis perhitungan PC I Girder H-170 cm sepanjang 40,80 meter dengan jarak antar girder 1,40 meter dan mutu beton yang digunakan ialah f'c 60 MPa.

Rumusan Masalah

Berdasarkan latar belakang masalah yang telah dijelaskan diatas maka rumusan masalah dalam penelitian ini adalah:

- 1. Berapa jumlah tendon yang digunakan pada PC I Girder H-170 pada panjang bentang 40,80 m?
- 2. Berapa jumlah strand yang digunakan pada PC I Girder H-170 pada panjang bentang 40,80 m?
- 3. Berapa besar lendutan yang terjadi pada PC I Girder H 170 cm akibat pembebanan?

Tujuan Penelitian

Tujuan penelitian ini ialah

- 1. Menghitung jumlah kebutuhan tendon pada satu penampang PC I Girder H 170 cm dengan panjang bentang 40,80 m
- 2. Menghitung jumlah kebutuhan strand pada satu penampang PC I Girder H 170 cm dengan panjang bentang 40,80 m
- 3. Menganalisis besar lendutan akibat pembebanan dengan lendutan ijin jembatan

TINJAUAN PUSTAKA

Definis Jembatan

Jembatan adalah suatu bangunan struktur yang dimana kendaraan dapat menyebrangi sungai, lembah, jurang, rel kereta api dari atas atau menghubungkan dengan jalan lain yang tidak memiliki tinggi permukaan yang sama.

Pembebanan Jembatan

Pembebanan yang digunakan dalam perencanaan balok prategang ini mengacu pada SNI 1725 – 2016 Pembebanan untuk jembatan yaitu sebagai berikut.

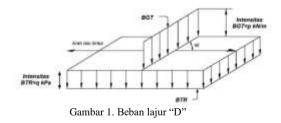
1. Berat sendiri

Berat sendiri adalah berat yang diakibatkan oleh berat bahan dan bagian jembatan yang dimana merupakan bagian elemen struktural.

2. Beban mati tambahan

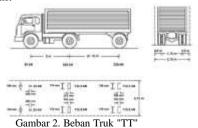
Beban mati tambahan adalah berat yang diakibatkan oleh berat seluruh bahan yang merupakan elemen non struktural, seperti:

- a) Beban aspal
- b) Beban air hujan
- c) Beban parapet
- 3. Beban lalu lintas
 - a. Beban lajur "D" (TD)


Beban lajur ini terdiri dari Beban Terbagi Rata (BTR) dengan Beban Garis Terpusat (BGT). BTR mempunyai intensitas q dengan satuan kPa. Besaran ini diperhitungkan dengan panjang L yang dapat dilihat dari persamaan dibawah ini.

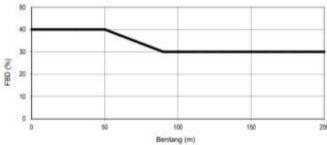
Jika
$$L \le 30 \ m : q = 9.0 \ kPa$$
(1)
Jika $L > 30 \ m : q = 9.0 \ (0.5 + (15/L)) \ kPa$ (2)
Keterangan:

q: intensitas Beban Terbagi Rata dalam arah memanjang (kPa)


L: panjang total jembatan yang dibebani (meter)

BGT dengan intensitas p kN/m dengan besarnya intensitas p adalah 49 kN/m.

b. Beban truk "T" (TT)


Adanya beban truk "T" tidak dapat digunakan bersama dengan beban "D". Beban ini digunakan dalam perhitungan struktur lantai.

Pembebanan truk "T" ini terdiri atas kendaraan truk semi-trailer truk-truk semi-trailer yang berbentuk seperti gambar di atas.

c. Faktor Beban Dinamis

Faktor Beban Dinamis (FBD) merupakan interaksi antara kendaraan yang bergerak dan jembatan. Untuk pembebanan truk "T", FBD diambil 30%.

Gambar 3. Faktor Beban Dinamis untuk pembebanan lajur "D"

d. Gaya Rem

Gaya rem harus diambil yang terbesar dari:

- a) 25% dari berat gandar truk desain atau,
- b) 5% dari berat truk rencana ditambah beban lajur terbagi rata BTR

Gaya rem diasumsikan bekerja secara horizontal pada jarak 1,8 m di atas permukaan jalan diletakan pada masing-masing arah longitudinal dan dipilih yang paling menentukan. Nilai gaya rem diambil dari nilai yang terbesar antara 25% berat truk desain atau 5% berat truk rencana ditambah beban lajur terbagi rata BTR.

4. Beban angin

Beban angin bekerja horizontal dengan diasumsikan distribusi merata pada permukaan tegak lurus sumbu memanjang. Tekanan angin rencana harus dikerjakan baik pada struktur jembatan maupun pada kendaraan yang melintasi jembatan. Berdasarkan SNI 1725-2016, kecepatan angin rencana $(V_{\rm DZ})$ untuk jembatan dengan tinggi elevasi lebih dari 10000 mm di atas permukaan air atau tanah, harus dihitung dengan persamaan berikut.

$$V_{DZ} = 2.5 V_0 \left(\frac{V_{10}}{V_B}\right) ln\left(\frac{Z}{Z_0}\right) \dots (3)$$

Dengan,

V_{DZ} = kecepatan angin rencana pada elevasi rencana, Z (km/jam)

 V_{10} = kecepatan angin pada elevasi 10000 mm di atas permukaan tanah atau di atas permukaan air rencana (km/jam)

V_B = kecepatan angin rencana (90 – 126 km/jam) pada elevasi 1000 mm

Z = elevasi struktur diukur dari permukaan tanah atau dari permukaan air dimana beban angin dihitung (Z > 10000 mm)

V_o = kecepatan gesekan angin (km/jam)

 Z_0 = panjang gesekan di hulu jembatan (mm)

Berdasarkan SNI 1725-2016, kecepatan angin pada elevasi 10000 mm di atas permukaan (V_{10}) dapat diperoleh dari,

- 1) Grafik kecepatan angin dasar untuk berbagai periode ulang.
- 2) Survei angin pada lokasi jembatan.

Jika tidak didapatkan data yang lebih baik, perencana dapat mengasumsikan bahwa $V_{10} = V_B = 90 - 126 \text{ km/jam}$.

Tabel 1. Nilai V0 dan Z0 untuk berbagai variasi kondisi permukaan hulu

2400121111111	to dan Bo antan cereage	ir tarrasi nonaisi pern	101101011 11010
Kondisi	Lahan Terbuka	Sub Urban	Kota
V_0 (Km/Jam)	13,2	17,6	19,3
Z_0 (mm)	70	1000	2500

a. Beban angin pada struktur

Arah angin rencana diasumsikan horizontal dengan kecepatan angin rencana yang digunakan sesuai dengan kondisi setempat. Apabila data tidak tersedia, tekanan angin rencana dapat ditetapkan dengan menggunakan persamaan sebagai berikut:

$$P_D = P_B \left(\frac{V_{DZ}}{V_B}\right)^2 \dots (4)$$

Tabel 2. Tekanan Angin Dasar

Komponen Bangunan Atas	Angin Tekan (MPa)	Angin Hisap (MPa)
Rangka, Kolom, dan Pelengkung	0,0024	0,0012
Balok	0,0024	N/A
Permukaan Datar	0,0019	N/A

b. Beban angin pada kendaraan

Tekanan angin tersebut harus diasumsikan sebagai tekanan menerus sebesar 1,46 N/mm, yang tegak lurus dan bekerja 1800 mm diatas permukaan jalan.

Tabel 3. Komponen beban angin yang bekerja pada kendaraan

Sudut Derajat (°)	Komponen Tegak Lurus (N/mm)	Komponen Sejajar (N/mm)
0	1,46	0,00
15	1,28	0,18
30	1,20	0,35
45	0,96	0,47
60	0,50	0,55

5. Beban akibat temperatur

Berdasarkan SNI 1725-2016, perbedaan temperatur pada gelagar terbuat dari beton atau baja harus berdasarkan temperature maksimum dan minimum pada tabel dibawah ini yang dapat digunakan untuk menghitung besaran rentang simpangan akibat beban temperature dengan persamaan berikut.

$$\Delta_{T} = \alpha L \left(T_{Maxdesign} - T_{Mindesign} \right) (5)$$
Dengan,

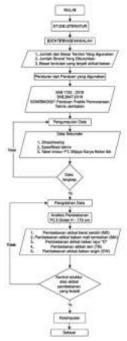
 ΔT = rentang simpangan akibat beban temperatur (°C)

L = panjang bentang jembatan (m)

H = tinggi girder (m)

 $T_{maxdesign}$ = temperatur jembatan rata-rata maksimum (°C) $T_{mindesign}$ = temperatur jembatan rata-rata minimum (°C) α = koefisien perpanjangan akibat suhu (mm/mm/°C)

Tabel 4. Temperatur jembatan rata-rata nominal

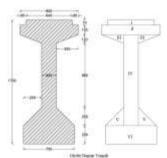

Temperatur Jembatan Rata Rata Minimum (1)	Temperatur Jembatan Rata Rata Maksimum
15°C	40°C
15°C	40°C
15°C	45°C
	Rata Minimum (1) 15°C 15°C

CATATAN (1) Temperatur jembatan rata-rata minimum bisa dikurangi 5°C untuk lokasi yang terletak pada ketinggian lebih besar dari 500 m diatas permukaan laut.

METODE PENELITIAN

Pada penelitian ini menggunakan metode yang dilakukan ialah terdiri dari berbagai tahapan yaitu tahap persiapan, tahap pengumpulan data, tahap pengolahan data dan tahap kesimpulan. Pada tahap persiapan terdiri dari mempelajari literatur literatur dan peraturan tentang jembatan yang berkaitan tentang penelitian yang ditinjau, tahap pengumpulan data yakni mengumpulkan data yang diperlukan pada penelitian, tahap pengolahan data meliputi *preliminary design*, menghitung pembebanan yang terjadi, menghitung kebutuhan strand dan tendon, pemeriksaan tegangan, serta menghitung lendutan yang terjadi menggunakan bantuan program software Microsoft Excel. Pada tahap kesimpulan yakni menyimpulkan hasil pengolahan data yang

telah dilakukan.


Gambar 4. Tahapan Penelitian

Pada analisis perhitungan PC I Girder H-170 cm pada proyek jalan tol tebing tinggi – parapat ruas serbelawan – siantar menggunakan acuan pembebanan SNI 1725:2016 tentang pembebanan untuk jembatan dan RSNI T – 12 – 2004 tentang perencanaan struktur beton untuk jembatan serta 02/M/BM/2021 Tentang Panduan Praktis Perencanaan Teknis Jembatan.

HASIL DAN PEMBAHASAN

Berikut adalah analisis perhitungan struktur PC I Girder H-170 cm dengan spasi antar girder 140 cm dan mutu beton yang digunakan 60 MPa.

Gelagar Non Komposit

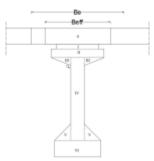
Gambar 5. Dimensi Non Komposit

Tabel 5. Rekapitulasi perhitungan gelagar nonkomposit

No	Uraian	Simbol	Nilai	Satua n
1	Tinggi gelagar nonkomposit	Н	1,70	m
2	Luas penampang nonkomposit	A	0,6732	m^2
3	Letak titik berat dari alas	y_b	0,82013	m
4	Letak titik berat dari atas	y_t	0,87987	m
5	Momen inersia terhadap alas gelagar	I_b	0,69048	m^4
6	Momen inersia terhadap titik berat gelagar	I_{g}	0,2383	m^4
7	Tahanan momen sisi atas terhadap gelagar	S_{top}	0,27083	m^3
8	Tahanan momen sisi bawah terhadap gelagar	S_{Bottom}	0,29056	m^3

Lebar Efektif Plat Lantai

Nilai lebar efektif (Be) diambil nilai terkecil dari:


$$\frac{L_b}{4} = \frac{40,80}{4} = 10,20 \text{ meter}$$

$$S_g = 1,40 \text{ meter}$$

$$12.t_s = 12.0,23 = 2,76$$
 meter

Sehingga nilai lebar efektif (Be) yang digunakan ialah 1,40 meter. Perbandingan modulus elastisitas pelat dan gelagar (n) ialah 0,5967 maka lebar pengganti beton plat lantai (B_{eff}) ialah 0,8354 meter.

Gelagar Komposit

Gambar 6. Dimensi Komposit

Tabel 6. Rekapitulasi perhitungan gelagar komposit

No	Uraian	Simbol	Nilai	Satuan
1	Tinggi gelagar komposit	H_{c}	1,930	m
2	Luas penampang komposit	A_{c}	0,864	m^2
3	Letak titik berat dari alas	y_{bc}	1,0412	m
4	Letak titik berat dari atas	y_{tc}	0,88874	m
5	Momen inersia terhadap alas gelagar	I_{bc}	1,3243	m^4
6	Momen inersia terhadap titik berat gelagar	I_{gc}	0,3870	m^4
7	Tahanan momen sisi atas terhadap gelagar	S_{topc}	0,435497	m^3
8	Tahanan momen sisi bawah terhadap gelagar	$S_{Bottomc}$	0,37171	m^3

Pembebanan Pada Gelagar

Pembebanan pada gelagar yaitu pembebanan akibat berat sendiri (MS), beban mati tambahan (MA), beban lajur "D" (TD), beban gaya rem (TB), beban angin (EW).

Berat Sendiri (MS)

Berat sendiri adalah berat bagian struktur tersebut ditambah bagian struktur lainnya yang dipikulnya. Berat sendiri gelagar terdiri dari berat gelagar, diafragma, rc plate, plat lantai. Berikut dibawah ini adalah rekapitulasi berat sendiri.

Tabel 7. Rekapitulasi perhitungan berat sendiri

No	Jenis beban berat sendiri	Berat	Gaya geser	Momen
		$\mathbf{W}_{\mathbf{MS}}$	V_{MS}	$\mathbf{M}_{\mathbf{MS}}$
		(kN/m)	(kN)	(kNm)
1	Gelagar	18,01256	367,4561	3748,0520
2	Diafragma	0,987	20,137	205,4000
3	Rc plate	1,2768	26,0467	265,6765
4	Plat lantai	7,728	157,6512	1608,0422
	Total	28,004	571,291	5827,171

Beban Mati Tambahan (MA)

Beban mati tambahan adalah beban akibat elemen nonstruktural jembatan. Beban mati tambahan berupa beban aspal, beban air hujan, beban parapet. Berikut dibawah ini adalah rekapitulasi beban mati tambahan.

Tabel 8. Rekapitulasi beban mati tambahan

No	Jenis beban berat sendiri	Berat W _{MS} (kN/m)	Gaya geser V _{MS} (kN)	Momen M _{MS} (kNm)
1	Parapet	1,440	29,376	299,6352
2	Perkerasan Aspal	1,54	31,416	320,4432
3	Genangan Air Hujan	0,686	13,9944	142,7429
	Total	3,666	74,7864	762,8213

Beban Lajur "D" (TD)

Beban lajur "D" adalah beban yang bekerja pada seluruh jalur kendaraan yang menimbulkan pengaruh ekivalen dengan iring – iringan kendaraan yang masuk ke jembatan. Beban lajur "D" terdiri dari dua jenis beban yaitu beban merata (BTR) dan beban terpusat (BGT). Berikut dibawah ini adalah rekapitulasi beban lajur "D".

Tabel 9. Rekapitulasi perhitungan beban lajur "D"

No	Jenis beban lajur "D"	Berat W _{TD} (kN/m)	Gaya geser V _{TD} (kN)	Momen M _{MS} (kNm)
1	Beban Merata (BTR)	10,9324	223,0209	2274,8137
2	Beban Terpusat (BGT)	96,04	48,02	979,608
	Total		271,040	3254,412

Gaya Rem (TB)

Menurut SNI 1725:2016 nilai gaya rem harus diambil dari nilai terbesar antara 25% dari berat gandar truk desain atau 5% dari berat truk rencana ditambah beban lajur terbagi rata BTR. Berikut dibawah ini adalah rekapitulasi beban akibat gaya rem.

Tabel 10. Rekapitulasi perhitungan gaya rem

No	Jenis beban lajur "D"	Berat W _{TB} (kN)	Gaya geser V _{TD} (kN)	Momen M _{MS} (kNm)
1	25% dari berat gandar	12,5		_
2	5% dari berat truk rencana + BTR	26,7803	1,7967	36,6732

Momen maksimum dan gaya geser yang terjadi akibat gaya rem ialah 36,6732 kNm dan 1,7967 Kn.

Beban Angin (EW)

Gaya angin rencana harus dikerjakan baik pada struktur jembatan maupun pada kendaraan yang melintasi jembatan. Jembatan harus direncanakan memikul gaya akibat tekanan angin pada kendaraan, dimana gaya tersebut harus diasumsikan sebagai tekanan menerus sebesar 1,46 N/mm tegak lurus dan bekerja 1800 mm di atas permukaan jalan. Berikut dibawah ini rekapitulasi beban angin (EW).

Tabel 11. Rekapitulasi perhitungan beban angin

		Berat	Gaya geser	Momen
No	Jenis beban angin	W_{TD}	$ m V_{TD}$	M_{MS}
		(kN/m)	(kN)	(kNm)
1	Beban Angin Struktur (EW _S)	2,102	42,88	437,4596
2	Beban Angin Kendaraan (EW _L)	0,751	15,317	156,2384

Rekapitulasi Gaya Geser dan Momen Maksimum

Berikut dibawah ini rekapitulasi gaya geser dan momen maksimum akibat pembebanan.

Tabel 12. Rekapitulasi perhitungan gaya geser dan momen maksimum

Jenis Pembebanan	Kode Pembebanan	Gaya Geser (kN)	Momen Maksimum (kNm)
Berat Sendiri	MS	571,291	5827,171
Beban Mati Tambahan	MA	74,786	762,821
Beban Lajur "D"	TD	271,040	3254,412
Gaya Rem	TB	1,797	36,672
Beban Angin Struktur	EW_S	42,888	437,460
Beban Angin Kendaraan	EW_L	15,317	156,238
Total		977,121	10474,775

Penentuan Jumlah Tendon dan Strand

Jumlah strand prategang yang diperlukan biasanya ditentukan berdasarkan tegangan tarik pada serat bawah gelagar akibat kombinasi pembebanan layan III dimana besarnya tegangan tarik pada sisi bawah tersebut.

Tabel 13. Rekapitulasi perhitungan jumlah tendon dan strand

No	Uraian	Simbol	Nilai	Satuan
1	Jarak pusat penampang prategang ke tepi bawah gelagar	y_{bs}	0,187	m
2	Eksentrisitas tendon pada tengah bentang gelagar	e_c	0,6331	m
3	Gaya prategang awal yang digunakan	Pt	11.373,3543	kN
4	Jumlah tendon yang digunakan	n_t	5	Buah
5	Jumlah strand yang dibutuhkan	n_s	92	Buah
6	Persentase prategang yang terjadi akibat jacking	P_0	79,172	%
7	Gaya prategang yang terjadi akibat jacking	P_{i}	13.380,417	Kn
8	Kehilangan tegangan (asumsi kehilangan = 26%)	Peff	9901,508	Kn

Kehilangan Gaya Prategang

Kehilangan gaya prategang terbagi menjadi 2 yaitu kehilangan prategang seketika dan kehilangan prategang jangka panjang. Berikut adalah rekapitulasi kehilangan gaya prategang pada tengah bentang.

Tabel 14. Rekapitulasi perhitungan kehilangan gaya prategang

Fase Kehilangan Prategang	Kehilangan Prategang	Notasi	Nilai	Satuan
Saat transfer	Akibat gesekan	Δ_{fpF}	51,452	MPa
	Akibat pergeseran angkur	Δ_{fpA}	36,410	MPa
	Akibat perpendekan elastis	$\Delta_{ m fpES}$	56,498	MPa
Saat transfer	Akibat susut pada gelagar	Δ_{fpSR}	29,137	MPa
hingga	Akibat relaksasi tendon	Δ_{fpR1}	8	MPa
pengecoran dek	Akibat rangkak pada gelagar	$\Delta_{ m fpCR}$	61,928	MPa
Saat pengecoran	Akibat susut pada gelagar	$\Delta_{ m fpSD}$	20,013	MPa
dek hingga waktu	Akibat relaksasi tendon	Δ_{fpR2}	8	MPa
akhir	Akibat rangkak pada gelagar	$\Delta_{ m fpCD}$	8,564	MPa
	Gaya prategang tambahan akibat susut dipelat	$\Delta_{ m fpSS}$	28,984	MPa

Total kehilangan gaya prategang = 251,019 MPa. Sehingga persentase kehilangan prategang yang terjadi ialah 13,495%. Tegangan prategang efektif setelah kehilangan gaya prategang f_{pe} = 1125,3811 MPa < Max f_{pe} = 1340 MPa maka gaya prategang efektif ialah 10.219,9463 Kn.

Pemeriksaan Tegangan

Tegangan yang terjadi pada beton prategang memiliki batasan sehingga perlu dilakukan pemeriksaan. Tegangan izin beton terdiri dari tiga kondisi yaitu kondisi saat transfer, kondisi layan, kondisi layan di plat. Berikut dibawah ini rekapitulasi tegangan izin penampang kondisi saat transfer, kondisi layan, kondisi layan di plat.

Tabel 15. Rekapitulasi perhitungan tegangan penampang saat transfer

Lokasi	$\frac{P_{transfer}}{A_g}$	$\frac{P_{Transfer} \cdot e_{mid}}{S}$	$\frac{M_{MS_G}}{S}$	Total	Cek
	MPa	MPa	MPa	MPa	
Serat atas gelagar	-16,893441	26,550627	-13,839151	-4,181964	Oke
Serat bawah gelagar	-16,893441	-24,747669	12,899384	-28,74172	Oke

Tabel 16. Rekapitulasi perhitungan tegangan penampang saat konstruksi

Lokasi	$\frac{P_{transfer}}{A_g}$	$\frac{P_{Transfer} \cdot e_{mid}}{S}$	$\frac{M_{MS}}{S}$	Total	Cek
	MPa	MPa	MPa	MPa	
Serat atas gelagar	-16,893441	26,550627	-21,516	-11,8588	Oke
Serat bawah gelagar	-16,893441	-24,747669	20,0054	-21,5862	Oke

Tabel 17. Rekapitulasi perhitungan tegangan penampang saat kondisi layan

Lokasi	$rac{P_{ef}}{A_{cg}}$ MPa	$rac{P_{ef}\cdot e_{mid}}{S}$ MPa	$\frac{M_{MS}}{S}$ MPa	$rac{M_{MA}}{S}$ MPa	$rac{m{M_{LL}}}{m{S}}$ Mpa	Total Mpa	Cek
Serat atas gelagar	-16,89344	26,550627	-21,51600	-1,7516108	-7,557076	-21,16750	Oke
Serat bawah gelagar	-16,89344	-24,74767	20,05493	1,64174957	8,853869	-11,09056	Oke
Serat atas pelat				-2,8450069	-12,27438	-15,11938	Oke
Serat bawah pelat				-2,1087427	-9,097872	-11,20661	Oke

Tabel 18. Pemeriksaan Tegangan Pada Serat Atas Sambungan Gelagar

x	Eksen trisitas	N	Iomen (kN	m)	Tegangan						Cek
m	mm	M_{MS}	M_{MA}	\mathbf{M}_{LL}	$\frac{-P_{ef}}{A_g}$	$\frac{P_{ef}, e}{S}$	$\frac{-M_{MS}}{S}$	$\frac{-M_{MA}}{S_{tcg}}$	$\frac{-M_{LL}}{S_{tcg}}$	Total	
7	359,952	3312,929	433,688	1702,782	-15,015	13,416	-12,233	-0,996	-3,910	-18,737	Oke
12,2	530,830	4885,661	639,570	2566,447	-15,185	20,009	-18,040	-1,469	-5,893	-20,577	Oke
17,4	619,433	5701,151	746,324	3134,501	-15,355	23,610	-21,051	-1,714	-7,198	-21,706	Oke
23,4	619,433	5701,151	746,324	3134,501	-15,555	23,918	-21,051	-1,714	-7,198	-21,599	Oke
28,6	530,830	4885,661	639,570	2566,447	-15,677	20,657	-18,040	-1,469	-5,893	-20,421	Oke
33,8	359,952	3312,929	433,688	1702,782	-15,507	13,856	-12,233	-0,996	-3,910	-18,789	Oke

Tabel 19. Pemeriksaan Tegangan Pada Serat Bawah Sambungan Gelagar

	Tuber 15.1 emeringani regungan rada perar bawan banteungan cetagai										
x	Eksen trisitas	N		Tegangan							
m	mm	M_{MS}	M_{MA}	${ m M_{LL}}$	$-P_{ef}$	$oldsymbol{P_{ef}}$, $oldsymbol{e}$	$-M_{MS}$	$-M_{MA}$	$-M_{LL}$	Total	
					$\overline{A_g}$	S	S	S_{bcg}	S_{bcg}		
7	359,952	3312,9294	433,6878	1362,2255	-15,0149	-12,5053	11,4019	1,1667	3,6647	-11,2869	Oke
12,2	530,830	4885,6608	639,5704	2053,1575	-15,1848	-18,6505	16,8146	1,7206	5,5235	-9,7766	Oke
17,4	619,433	5701,1511	746,3243	2507,6007	-15,3547	-22,0071	19,6212	2,0078	6,7461	-8,9867	Oke
23,4	619,433	5701,1511	746,3243	3134,5009	-15,5549	-22,2940	19,6212	2,0078	8,4326	-7,7873	Oke
28,6	530,830	4885,6608	639,5704	2053,1575	-15,6767	-19,2546	16,8146	1,7206	5,5235	-10,8725	Oke
33,8	359,952	3312,9294	433,6878	1362,2255	-15,5068	-12,9149	11,4019	1,1667	3,6647	-12,1884	Oke

Tanda (-) pada tegangan menunjukkan bahwa tidak ada gaya tarik yang bekerja disambungan. Sehingga persyaratan batas tegangan disambungan terpenuhi.

Kapasitas Lentur Penampang

Kapasitas lentur diperiksa terhadap momen ultimit akibat kombinasi pembebanan kuat I yang dihitung sebagai berikut:

 $M_u = 14.344,0858 \text{ kNm} < Mr = 23.715,7359 \text{ kNm}$

Pemeriksaan tulangan minimum = 1,33 Mu = 19.077,6342 kNm < Mr = 23.715,7359 kNm. Karena Mr > dari persyaratan tulangan minimum maka kapasitas lentur penampang memenuhi persyaratan.

Kapasitas Geser Penampang

Kapasitas geser penampang dianalisis pada lokasi geser maksimum. Gaya geser maksimum terjadi pada daerah dekat tumpuan. Tulangan geser yang digunakan ialah tulangan berdiameter 13 mm, jumlah kaki 2 dengan jarak antar tulangan geser 150 mm. Berikut adalah perhitungan kapasitas geser penampang.

Kontribusi gaya prategang terhadap ketahanan geser (Vp) = 317,0291 Kn. Gaya geser ultimit dimuka geser kritis (Vucr) = 1732,952 kN merupakan gaya geser kombinasi kuat I. Momen ultimit dimuka geser kritis (Mucr) = 2531,229 kNm merupakan momen maksimum kombinasi kuat I. Momen kombinasi kuat I dimuka geser kritis tidak boleh kurang dari M_{ucr} = 2531,229 kNm > (V_{ucr} - V_p) d_v = 2147,3213 kNm. Kuat geser nominal (Vn) = 2523,70045 kN dan (ϕv .Vn) = 1892,7753 Kn > Vucr = 1732,952 Kn sehingga kapasitas geser nominal masih sanggup menahan geser yang terjadi pada gelagar. Tegangan geser beton = 6,572 MPa < 0,125 f'cg =7,5 MPa sehingga tulangan geser D13 – 150 mm masih memenuhi spasi maksimum yang diizinkan.

Lendutan

Lendutan PC I Girder H - 170 cm adalah perubahan bentuk pada PC I Girder H - 170 cm dalam arah y akibat adanya pembebanan vertikal yang diberikan pada PC I Girde H - 170 cm. Berdasarkan analisis lendutan yang telah dilakukan besar lendutan berdasarkan kombinasi layan I ($\delta_{layan\ I}$) = 0,0415 m < L/800 =0,051 m. maka lendutan yang terjadi akibat pembebanan masih memenuhi dari lendutan izin.

SIMPULAN

Berdasarkan hasil dan pembahasan diatas maka dapat disimpulkan sebagai berikut:

- 1. Jumlah tendon yang digunakan ialah 5 buah tendon.
- 2. Jumlah strand yang digunakan ialah 92 buah strand.
- 3. Besar lendutan yang terjadi akibat pembebanan sesuai pembebanan kombinasi layan I ialah 0,0415 meter.

UCAPAN TERIMA KASIH

Peneliti berterima kasih kepada Politeknik Negeri Medan melalui Pusat Penelitian dan Pengabdian kepada Masyarakat (P3M) yang telah mendanai penelitian ini. Peneliti juga berterima kasih kepada pihak pihak yang berperan penting dalam penyelesain penelitian ini.

DAFTAR PUSTAKA

Marga, D. J. (2011). Manual Perencanaan Struktur Beton Pratekan Untuk Jembatan. Jakarta: BSN.

Marga, D. J. (2021). Panduan Praktis Perencanaan Teknis Jembatan. Jakarta: Bina Marga.

Badan Standarisasi Nasional. (2004). *RSNI T-12-2004 Perencanaan Struktur Beton untuk Jembatan*. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. (2016). SNI 1725:2016 Pembebanan untuk Jembatan. Jakarta: Badan Standarisasi Nasional.

- Nasional, B. S. (2019). SNI 2847:2019 Tentang Persyaratan Beton Struktural Untuk Bangunan . Jakarta: BSN.
- SAPUTRA, T. S. (2016). MODIFIKASI DESAIN STRUKTUR JEMBATAN SUMBERWARU STA 84+918 PADA RUAS JALAN TOL SURABAYA MOJOKERTO SEKSI IV KABUPATEN MOJOKERTO. Surabaya.
- SAPUTRI, M. A. (2028). PERANCANGAN STRUKTUR ATAS JEMBATAN JALUR LINTAS SELATAN PLANJAN-TEPUS STA. 8+580 8+650 MENGGUNAKAN PCT GIRDER. Yogyakarta.

Yustika Hubertha Haning, E. P. (2020). STUDI ALTERNATIF STRUKTUR ATAS JEMBATAN DENGAN BALOK GIRDER PRATEGANG TIPE I. STUDI ALTERNATIF STRUKTUR ATAS JEMBATAN DENGAN BALOK GIRDER PRATEGANG TIPE I.